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INTRODUCTION TO PART B

An inexhaustible source of algebraic topology is the homotopy
classification problem. If we have a space we would like to know a list
of algebraic invariants which determine the homotopy type of the space.
If we have a map we would like to characterize the map up to homotopy
by algebraic invariants. Moreover, if the set of homotopy classes
[X, G] is a group, for example if G is a topological group, we would
like to determine the group structure of the set as well. Helpful tools

for these problems are functors from the topological category to an
algebraic category like homology, cohomology, homotopy groups etc.
However, the known functors give us only rather crude algebraic pictures
and almost nothing is known about the image categories of these functors.

There are two opposite directions in which the problem can be
pursued, namely rational homotopy theory and stable homotopy theory.
Both are studied with great energy. Indeed, research camps seem to
have formed - on one side of the front are those mathematicians who think
a rational space is the most natural object, on the other side those for
whom a spectrum is the most natural object to start with. At the time
of J. H. C. Whitehead people were interested in finite polyhedra. Soon

they realized that the calculation of homotopy groups of spheres is a deep
and fundamental obstacle to solving the classification problems. Ration-

ally these groups were computed by Serre. Modulo a prime there are
partial results, but the nature of the groups is essentially still unknown.
Moreover, we have a complete rational solution of the homotopy classi-
fication problem in the results of Quillen and Sullivan. They have shown

that the homotopy categories of differential graded Lie algebras over Q
and of differential graded commutative algebras over Q are equivalent
to the homotopy category of 1-connected rational spaces. In view of this

we may now well doubt whether stable homotopy theory is a 'first approxi-
mation to homotopy theory' as it was conceived to be by J. H. C. Whitehead
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and Spanier (in Proc. Nat. Acad. Sci. 39 (1953), 655-60). Instead, we
might try to understand the homotopy classification problem by extending
the rational solution of the problem to a solution over a subring R of the
rationals. It is one purpose of this book to initiate such an investigation.

The only result in the literature which illustrates our approach is
the Hilton-Milnor theorem on the graded homotopy group of a one-point
union of spheres. Rationally this group is just a free graded Lie algebra.
Hilton showed that over the integers we still have a direct sum decompo-
sition of these groups in terms of a basis in a free Lie algebra and in
terms of homotopy groups of spheres. We believe in fact that over the
integers this group should also be a free object in a suitable category.
It developed that a description of even this category requires a formidable
apparatus. However, for a subring R of the rationals Q with 1/2,
1 /3 E R a category as in the following problem has an elegant characteri-
zation. Let Top

E
be the homotopy category of F--connected spaces.

(1) Problem. Construct a category LieM such that the functor of
homotopy groups

L(. , R): Top, - LieM with

L(X, R) = n*(cX) 9) R (endowed with suitable algebraic structure)

maps a one-point union of spheres V to a free object L(V, R) in LieM.

Clearly Whitehead or Samelson products give the graded module
L(X, R) = n;k(c X) 9) R the structure of a graded Lie algebra over R.
Only for R = Q do we know that L(V, Q) is also a free Lie algebra. For
R * Q we have to introduce additional structure on L (X, R) to obtain the
objects in the category LieM required by problem (1). At first sight
this problem might appear to be a merely formal question. The solution
nevertheless is essential to our notion of extending rational homotopy
theory to a theory over a subring R of Q. The category LieM should
play a role in homotopy theory over R similar to that of the category
LieQ of graded rational Lie algebras in rational homotopy theory. Clearly
the non-rational theory is enormously more complicated than the rational
one. Still, the study of the rational situation can serve as a guide. We
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will give various examples to illustrate this.
Rational homotopy theory can be developed in two ways dual to

each other, namely via the cofibration or Lie algebra method of Quillen
and by the fibration or commutative algebra method of Sullivan. It

turned out that the cohomology functor H*( . , Q) has properties com-
pletely dual to those of the homotopy functor L( . , Q). This leads to our
next problem.

(2) Problem. Is there a category Div algM and a functor

M(. , R) : Topo - Div algM

with properties dual to those of the functor L(. , R) so that this duality
extends the known duality of the rational functors

M(.,Q)=H*(.,Q) and

L(., Q) =ii*(c .)9) Q?

Clearly the formulation of this problem is not very precise. It

expresses only our feeling of what it would be nice to have. We will show
that there is such a functor M(. , R), which we call the spherical co-
homotopy functor. For a finite dimensional polyhedron X the graded
R-module M(X, R) is given by the set of homotopy classes

Mn(X, R) = [X, f R]

where for the R-local n-sphere Sn we set

n

R

R

S n n odd

fZ Sn n even > 0 .R

By a result of Serre we know that S Q= K(Q, n) is an Eilenberg-MacLane
space. It is well known that for a product PQ of such Eilenberg-MacLane
spaces the cohomology algebra H*(P(W Q) is a free graded commutative
algebra. More generally, we found that for a product PR of spaces
n2 the algebra M(PR, R) is also a free object in the category Div algM,
which we construct. This category is appropriate for homotopy theory
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over R and generalizes the category of rational commutative algebras.
Although the construction of the categories LieM and Div algM

is quite intricate, it can be sketched as follows. The homotopy groups of

spheres give us the double graded R-module M = MR with

MR' m = Mn(Sm, R) _

This module with additional structure (namely smash product, higher-
order Hopf invariants yp for each prime p and units er a Mr;, r = R)
is an object in the category CoefR of coefficients. It turns out that there
is an associative tensor product 9 in this category CoefR which we can
use to define the notion of a monoid in CoefR. We show that in fact the
composition 0 of maps gives MR the monoid structure

0:MRgMR-'MR

in CoefR. For the categories

( LieR = category of graded Lie algebras over R
Div algR = category of graded commutative algebras over

with divided powers

we construct bifunctors

(3)

LieR x CoefR

Coef x Div algR R

-
0

LieR

lSfl+10R

(Sn) 9) R n oddn:
n eve+ n

R

which are associative with respect to the tensor product 9) in CoefR.

With these 'twisted' products R) we define actions of the monoid MR to
be morphisms

(4)

0: MR ) A-+A

in LieR

in Div algR

which are associative with respect to the monoid structure O on MR.
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The objects of LieM and DivalgM are now just the objects of LieR and
DivalgR together with such an action. The morphisms are just the equi-
variant maps in LieR or DivalgR respectively.

In this way we replace the coefficient module Q = MM of rational
homotopy theory by the coefficient module M = MR needed in homotopy
theory over R. Here we are not deterred by not knowing explicitly the
homotopy groups of spheres nm We just clarify the 'primary' alge-
braic structure of these groups, namely their structure as a monoid in
CoefR. The construction of the categories LieM and DivalgM depends
only on this primary structure. We will prove that there exist free objects
in these categories. This now allows us to formulate the first basic
classification result.

(5) Theorem. (A) The full subcategory of TopI of spaces homo-

topy equivalent to a one-point union of finitely many R-local spheres SR
is, via the functor L(. , R), equivalent to the full subcategory of LieM
of finitely generated free objects.

(B) The full subcategory of Top0 of spaces homotopy equi-
valent to a product of finitely many spaces 12R is, via the functor
M(. , R), equivalent to the full subcategory of DivalgM of finitely
generated free objects.

For R = Q this is a well known result of rational homotopy theory,
in fact for R = Q it is the restriction of the equivalences of Sullivan and
Quillen to the case of zero differentials.

We investigate the connection of the homotopy functors L( . , R)

and M(. , R) with the corresponding homology and cohomology functors.
That is, we consider the Hurewicz and degree maps, which are natural
transformations

(6) 5
(D ='D

Y
: L(Y, R) - PH*(SZY, R)

deg= deg
X

: M(X, R) - H*(X, R)

of Lie algebras and algebras respectively. Here we restrict the spaces
X and Y to those for which H*(SZY, R) and H*(X, R) are free R-modules
of finite type. Then the Lie algebra PH*(SZY, R) of primitive elements is
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defined. For R = QJ the Hurewicz map D is an isomorphism by the
Milnor-Moore theorem. Dually, deg is also an isomorphism for R =1
For R # Q the behaviour of (D and deg is unknown. Therefore we
consider only spaces X and Y for which either 45 or deg respectively
is still surjective, or else even admits a right inverse in the categories
LieR or DivalgR respectively.

For the twisted products R) in (3) we show

(7) Theorem. (A) If 4Y admits a right inverse we have an iso-
morphism in LieM

L(Y, R) = PH*(S1Y, R) MR

(B) If degX admits a right inverse we have an isomorphism
in DivalgM

M(X, R) = MR H*(X, R).

Clearly (A) corresponds to the Milnor-Moore theorem for R = Q.
For R # Q the Hilton-Milnor theorem, as well as the results of G. J.
Porter on homotopy groups of a fat wedge of spheres, are further illustra-
tions of (A).

Next we study the R-localization of the group [EX, Y] = [X, 62Y],
which we assume to be nilpotent. Our results are also applicable to the
study of the group [X, G] where G is a topological group. We define a
bifunctor

expM : DivalgM x LieM - Category of groups

which is essentially the exponential group on a Lie algebra. Furthermore
we obtain a natural homomorphism

p : expM(M(X, R), L(Y, R)) - [EX, Y]R

and we prove

(8) Theorem. If Y or degX is surjective, the homomorphism p
is an isomorphism.
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If 4) Y or degX even admits a right inverse, we can replace the
coefficients M by R. In fact, since we have isomorphisms

expM(M A, L) = expR(A, L)

expM(B, K M) = expR(B, K)

we obtain from (8) and (7)

(9) Theorem. (A) If degX admits a right inverse, we have an iso-
morphism

expR(H*(X, R), n*(QY) 9) R) = [EX, Y]R .

(B) If 4) Y admits a right inverse, we have an isomorphism

expR(M(X, R), PH*(c2Y, R)) = [EX, Y]R

(C) If degX and (DY both admit right inverses, the group
[EX, Y]R depends only on the cohomology algebra H*(X, R) and on the
homology Lie algebra PH*(cY, R).

Clearly for R = Q the propositions (A), (B) and (C) coincide.
For R = Q theorem (9) is equivalent to

(10) Theorem. There is a natural isomorphism of rational nilpotent
groups

[EX, Y],= exp Hom(H*(X, Q), n*(52Y) ®Q).

Here the Q-vector space of degree zero homomorphisms

Hom(H*(X, Q), n*(62Y) ®Q)

has in a natural way the structure of a nilpotent rational Lie algebra and
exp denotes the group structure on this rational vector space given by the
Baker-Campbell-Hausdorff formula. With a certain amount of work,
formula (10) can also be derived from the rational homotopy theories of
Quillen or Sullivan. However, the formula does not appear in the liter-
ature. We give a different type of proof which is based only on the old
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result of Serre that the rational n-sphere Sn is an Eilenberg-MacLane
space if n is odd.

As a generalization of (10) we obtain, for example, from (9) (A)
and (3. 9) in chapter V

(11) Theorem. Let H*(X, R) be a finitely generated free R-module.
Let X be connected and let G be a connected topological group. Then

there is a natural isomorphism

[X, G]R = expR(H*(X, R), 1*(G) 9) R)

of R-local nilpotent groups if we assume that R contains 1/p for all primes
p with

p < i (dimR(X) - CR(X) + 3) :

dimR X denotes the top dimension n with Hn(X, R) # 0, and CR(X) is
the smallest dimension n > 1 with Hn(X, R) * 0. The reason for the
inequality in the theorem is that the homotopy group irm(Sn) of a sphere
Sn has no p-torsion for p <

a
(m - n + 3).

These results make it already sufficiently apparent that indeed we
can exploit rational homotopy theory in the non-rational case. Unfor-

tunately, a difficulty in the way of such an approach is that the methods
of proof in rational homotopy theory are not at all available in the non-
rational situation. Thus an entirely new approach is necessary.
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INTRODUCTION TO PART A

We obtain the results of part B by an extensive and systematic
study of the algebraic properties of the classical homotopy operations

composition of maps o
smash products It, #

Whitehead product [ , ]

James-Hopf invariants y
n

addition +

It is much easier and of more general interest to consider these opera-
tions in their generalized form, namely

o [EA, EB] X [EB, Z] - [EA, Z]

#, # : [EX, ZA] x [EY, EB] - [EX ^ Y, EA - B]

[ , ] [EA, Z] x [EB, Z] - [EA - B, Z]

yn [EA, EB] -+ [ZA, EB'n]

+ : [EA, Z] x [EA, Z] - [EA, Z] .

Many formulas relating to these operations are scattered through the liter-
ature. In the beginnings of homotopy theory the operations were only con-
sidered on homotopy groups nn(Y) _ [Sn, Y]. It took some time before the
significance of the generalized operations became evident. The Whitehead

product was invented by J. H. C. Whitehead in 1941. Arkowitz and Barratt
obtained its generalization around 1960. In 1955 James gave his wonderful
combinatorial definition of the higher-order Hopf invariants yn that is
fundamental to our work. The nature of the higher invariants (n > 2)
remained unclear. They later were more systematically studied by
Boardman and Steer (1967). However, their point of view is too stable-
minded for our purposes, since they only consider the suspended invariants
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an(a) = n-1 Yn(a) .

Moreover, they still use the left distributivity law for expanding the com-
posite ( + i7)a in terms of the Hilton-Hopf invariants as it was presented
by Hilton in 1955. In this book we exhibit a more agreeable left distribu-
tivity law in terms of the James-Hopf invariants, namely

(*) o a+77 o a=( +'n)° a + E cn (4, 'n)° Y n(a)
n>2

(We use this formula to prove explicitly the folklore result that the James-
Hopf invariants determine the Hilton-Hopf invariants.) A further major
result of this book is the expansion formula for the Whitehead product

[E ° a, 77 ° 0] of composition elements o a and 77 o f3. This formula
again uses the James-Hopf invariants and is of the form

(**) [E ° a, i Q] _ Z Z R (' 71) ° Y (a) # Y (Q)) .m,n m nn>1 m>1

A special case of this formula was already found by Barcus-
Barratt in 1958. The terms 77) and Rrn, n(4, 77) are sums of itera-
ted Whitehead products in and r!. We construct these terms explicitly.
These two expansion formulas are basic to the development of our theory.
Their proof makes use of classical commutator calculus in nilpotent group
theory and Lie algebra theory. Chapter I therefore is purely algebraic.
Various results of chapter I, while motivated by homotopy theory, seem
to be new. They also may be of interest in combinatorial group theory
and Lie algebra theory.

One of our crucial observations is that the above expansion formulas
(*) and (**) are in fact closely connected with the following two formulas for
the exponential function

ex = xn/n!
n> 0

in a free tensor algebra. The Baker-Campbell-Hausdorff formula
presents an infinite sum 4 (x, y) of rational Lie elements with the property

exeY = e4,(x, Y) .

10



Evaluated in a rational nilpotent Lie algebra, the sum c(x, y) = x y
becomes finite and gives us a group multiplication on L. This group we

denoted by exp(L). We prove that there exist integral Lie elements
cn(x, y) and Rm n(x, y) such that for x, y e L the group multiplication

,

in exp(L) satisfies the equations

x y = (x + Y) n cn(x, Y) n1

!
n>2

-1 -i 1 1(**),
x y xy = lI lI Rm n(x, Y) m! n1n>1 m>1 '

These equations are essentially special cases of the expansion formulas
(*) and (**) respectively. The characterization of the terms cn(x, y) and
Rm n(x, y) as a sum of iterated Lie brackets in x and y is about the
same as the one of the corresponding terms in (*) and (**). The factors
of the form 1/m! in the formulas (*)' and (**)' correspond to the James-
Hopf invariant ym ( ). In fact, this book will make it plausible to the
reader that the James-Hopf invariants can be regarded as divided power
operations. For this reason we believe that the theory of Malcev and
Lazard on the exponential correspondence between nilpotent rational Lie
algebras and nilpotent rational groups allows a still further generalization
by using divided power operations. We will not take the algebra that far.
However, a step in this direction is our construction of the group
expQ(A, L) where A is a (say finitely generated) graded commutative
rational algebra and L is a graded rational Lie algebra. The group

expQ(A, L) is generated by all pairs (x, a) with x E An, a E Ln and
n > 1. The principal relations are

n
(*)" (x, a)(x, a) _ (x, a + a) n (X , c (a, 13))n, n

n>2

(**) (x, a)- (Y' 13)-1(x, a) (Y' 13) = II II (mi n ,
Rm n(a, j5))

n>1 m>1 '

which correspond to (*) and (**) above. The algebra structure on A
induces a coalgebra structure A on the dual space C with Cri Hom(An,
Moreover the Q-vector space Hom(C, L) of degree zero homomorphisms
is a Lie algebra by the bracket

[f, g)=[, ]° (f9)

11



For this Lie algebra we obtain a canonical isomorphism of groups

(12) Theorem. expQ(A, L) = exp Hom(C, L) .

In the definition of expQ(A, L) we can replace Q by a ring R
and the terms xn/n! by divided power operations yn(x) on a commuta-

tive algebra A over R. In this way we get the group expR(A, L) which
generalizes the exponential group in (12). In fact the homotopy theoretic
analogue is much more general and gives us a group by using the relations
(*) and (**) instead of (*)" and (**)". As we show in §5 of chapter II
this group leads to a presentation of the group [EX, Z] if we assume that

EX ^- - Y.ieJ 1

decomposes as a one-point union of suspended co-H-spaces Yi Theorem
(8) above is essentially a particular case of this general result.

Working with algebras A with divided powers is more complicated
than working with rational algebras. For example, assume that all
powers xn for x E A are trivial. Then in a rational algebra all divided
powers yn(x) = xn /n! are clearly trivial. This is not the case if A is
an algebra over a subring R of Q. Here the divided powers have the
property that for a prime power pv = n with 1 /p ¢ R the divided power
yn(x) may still be a nontrivial element of order p. This actually happens
in homotopy theory. The James-Hopf invariants yn on homotopy groups

of spheres are essentially divided power operations on an algebra with
trivial powers. we present elements a in the homotopy groups of spheres
for which yp(a) is non-zero and thus is an element of order p, see
chapter IV. This peculiarity of the James-Hopf invariants, as we show,
corresponds to an interesting feature of the terms cn(x, y) in (*)' above,
namely that modulo the prime p we have a congruence

(13) Theorem. c(x, y) = xE)p + yg)p - (x + y)g)p mod p .

p.

The righthand side is classically known to be a Lie element modulo
In a similar way, we prove an old result of Zassenhaus, namely that

als o
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V v v
xl + ... + xkp (xI + ... + xk)g)p

is modulo p a Lie element, and we obtain a formula for it, see (I, 4. 9).
We will derive this formula from expansion formulas in homotopy theory.

I would like to acknowledge the support of the Sonderforschungs-
bereich 40 "Theoretische Mathematik" towards the completion of this
book. Furthermore, I am grateful to the publishers for their helpful
cooperation.

H. J. Baues
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PART A: HOMOTOPY OPERATIONS, NILPOTENT GROUP THEORY
AND NILPOTENT LIE ALGEBRA THEORY

L COMMUTATOR CALCULUS

Commutator calculus is a branch of group theory dealing with
nilpotent groups, Lie algebras, the exponential function and the Baker-
Campbell-Hausdorff formula, [12, 30]. One purpose of this book is to
exhibit a close connection of commutator calculus with classical homo-
topy theory.

In this chapter we describe some properties of the exponential
function on a rational tensor algebra. So we give explicit formulas for
the Zassenhaus terms and for an exponential commutator. The proof of
these formulas will be given via homotopy theory in chapter II, §4.

Moreover, we obtain a new presentation of the exponential group on a
Lie algebra of homomorphisms. In chapter II, §5, we exhibit the homo-

topy theoretic analogue of this presentation, see also Chapter VI. In

$4 we characterize the Zassenhaus terms c n(x, y) modulo a prime p,
p

for example we show

cp(x, y) = xQP + yop - (x + y)OP mod p.

Both sides of this equation are well known terms in classical commutator
calculus [30], however, that they are equal mod p seems to be a new
result. These equations will be of importance in the proof (VII § 3) that
there exists the M-extension of a Lie algebra where M is a module of
homotopy coefficients.

§ 1. The exponential function and the Zassenhaus formula

Let V be a Q vector space and let

(1. 1) T(V) = ® VOn C T(V) = II VOn
n-0 n>0

be the tensoralgebra on V. If V = { Vm I m E Z ; is graded, then
VOn and T(V) are graded Q vector spaces. The Lie bracket is defined
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by

(1. 2) [x, y] = xy - (-1) IXl lYlyx

I

where x, y are homogeneous terms of T(V) of degree Ixl, lyl. If V
is not graded, we regard V as concentrated in degree 0, so that in this
case we obtain the ordinary Lie bracket

(1.3) [x, Y]=xy-yx.

The free Lie algebra L(V) is the sub Lie algebra generated by V in
T(V). x E T(V) is a Lie element if x E L(V). We say x has weight n
if x E V9)n c T(V).

For the remainder of this section let V be a non graded !-
vector space. Thus the Lie bracket is given by (1. 3). Lz(x, y) denotes
the free Lie algebra over Z generated by the elements x and y. We
call elements of Lz(x, y) integral Lie elements (in x and y). They

are integral linear combinations of iterated Lie brackets with all factors
being x or y. Clearly for x, y E V we have a canonical map
L x, y) -, L (V).

For x E V the exponential function ex is defined by the infinite
sum

00

(1. 4) ex = I xn/n! ET(V).
n=0

The Baker-Campbell-Hausdorff formula states that

(1. 5) ex ey = eo(x, Y)

where

(1. 6) O(x, y) = x + y + 1 [x, y]

(X, Y EV)

+ 12 [[x, Y],Y]+iz [[Y, x], x] + .. .

is an (infinite) sum of homogeneous Lie elements, see [26], [30]. (1. 6)

gives the first terms of O(x, y) up to and including terms of weight 3.
Similar to the Zassenhaus formula (see p. 372 in [30]) we obtain:
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(1. 7) Proposition. There exist integral Lie elements cn(x, y) of

weight n such that

exey = ex+y
H e

cn (x, y) /n!

n>2

The first terms are

c2 (x, Y) = [x, Y]

c3(x, y) = 2[[x, y], y] + [[x, y], x]

c4(x, Y) = [c3 (x, y), x] + 3[[x, y, y, y]

+ [[x, Y, x, Y] + [[x, Y], [x, Y]]

We use the notation

[[xi, ... , xn] = [[... [xl, x2], ... , xn-1], xn] .

Clearly the last summand of c4(x, y) is trivial over Q, compare remark
(1. 18).

We now exhibit a method of computing the terms cn(x, y). The

natural numbers are ordered by 1 < 2 < 3 < ... , we say a function a
is monotone if x s y implies ax - ay.

(1. 8) Definition. Let P(N) be the set of all subsets of N = { 1, 2, 3,. . .
For a E P(N) we write a = { a1 < a2 < ... < a#a) where #a is the
number of elements of a. We say a total ordering < on P(N) is
admissible if for a, b E P(IN)

(i) a < b = #a s #b,
(ii) for any monotone injective function a AN -IN the induced

function a : P(N) - P(N) is monotone,
(iii) for J1 1j, {2) EP(IN) let {1) < 12).

We denote with _ ra the sum of elements ra taken in the ordering <
ac n

over all indices a E P(N) with acn = { 1, ... , n .

Remark. (ii) and (iii) imply that the function (3 : N - P(N) with
0(i) i I is monotone.

16



I
Examples of admissible orderings on P(IN) are the lexicographi-

cal orderings from the left or from the right.

Example. The lexicographical ordering from the left on P(IN)
is defined by

a< b4==> #a< #b or in case #a = #b with a.=b. for
1 1

i < j and aj # b. then aj < b..

(1. 9) Definition. Let F(M) be the free non associative algebraic
object with one binary operation [ , ] generated by the set M. F(M)

is the set of iterated brackets in letters x1, ..., x k E M, k > 1. Let
I x I be the length of the bracket x E F(M), that is, the total number of
factors in x. Let FG(M) be the free group generated by M and let
L (M) be the free Lie algebra over Z generated by M. We have
canonical functions (which we suppress from the notation)

Lz(M) I- F(M) - FG(M)

mapping a bracket to a commutator and to a Lie bracket respectively.
We write the multiplication in FG(M) additively, so that
[x, y] = -x - y + x + y is the commutator.

(1. 9)' Notation. If D(z1, ... , z
n

) is a subset of F(z1, ... , z
n

) then

D(v1, ... , vn) denotes the corresponding subset of F(v1, ... , vn)

obtained by the bijection zi F- vi, i = 1, 2, ... , n.

Let G = FG(x1, x2, ... , y1, y2' ... )/_ be the group given by

the relations [x, y] - 0 if x n y # 0. The set x c IN for
x F FG(x1, x2, ... , y1, y2, ...) is the set of all indices of letters in
x written as a word in reduced form. For the group G we derive the
following lemma which is crucial for the computation of the Zassenhaus
terms.

(1. 10) Lemma. For any admissible ordering < on P(IN) there exist
subsets

D
n

= D(xl, ... I xn, Y11 ... , Yn) C F(x1, ... , xn Y1 .. I Yn)

17



I
of elements of length n, n > 1, such that in G we have the equation

xl + x2 +... + xn + yl + y2 + ... + yn =

(x1 + yl) + ... + (xn + yn) + da
acn

For a = {a1 < ... < a#a } c n the element da E G is the sum of all
iterated commutators d E D(xa

' ' .. ' xa ' ya ' ... , ya ) given by
1 #a 1 #a

D#a, see (1. 9)'. The sum da can be taken in arbitrary order.
If any index appears twice in d c Dn by our assumption on G

the element d is trivial in G. Therefore Dn in (1. 10) can be chosen
such that we have a function

(1. 11) T : Dn S n

where S
n

is the permutation group of n. T(d) is the permutation map-

ping i E n to the index of the i-th factor (from the left) of d. By for-

getting indices we have a mapping

(1. 12) 1 : F(x1, x2, ... , y1, Y21 ... ) - F(x, Y).

In §4 of chapter II we will prove:

(1. 13) Theorem. For any choice of an admissible ordering < on P(IN)
and of subsets Dn C F(x1, x2, ... ' y1' y2' ... )
the elements

as obtained in (1. 10)

cn(x, y) = E 4 (d)
dEDn

satisfy the equation in (1. 7). Clearly in this sum F(d) denotes an inte-
gral Lie element in L, ,(x, y).

We shall see that (1. 13) is a special case of a homotopy theoretic
result on higher order Hopf invariants, see II (2. 8).

The following proof of lemma (1. 10) gives an inductive construc-

tion for the sets Dri This yields a description of all terms cn(x, y) by
(1. 13).

In any group we have the Witt-Hall identity (see page 290 of [30])
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(1. 14) [x, y+z] = [x, z] + [x, y] + [[x, y], z] .

I

Now let G = FG(x, y1, ... , yn)/- be the group given by the relations
[y, y'] - 0 if y n y' 0, y c 1q denotes the set of all indices i of

letters y i in y written as a word in reduced form. We derive from
(1. 14) by induction (take y = y1 and z = y2 + ... + yn

(1. 15) Lemma. In G we have the equation

[x, Yi +... +yn]=Yn+Yn-1 +... +Y1

where

Yj = _ E [[x, Ya , ..., Ya ] .

acn, j=Min(a) 1 #a

The sum Y. can be taken in arbitrary order. Min(a) = a1 denotes the
smallest element of a.

Proof of lemma (1. 10). We set D = 0. Assume now we have
found sets Dk, k < n, such that the equation in (1. 10) is valid for these
Dk. Then we obtain Dn+1 as follows. We consider the group G with
relations as in (1. 10). Comparing with (1. 15) we observe first that

xn+1 + (y1+... +y n) = (Y1+... +yn) + xn+l + U

where U = zb and zb = [[xn+1' yb Yb ] By definition
bcn, b#¢ 1 #b

of G all summands of U commute in G. Now we know from the induc-
tive assumption that

x1+... +xn+l +y1+... +yn+1=x1+... +xn+y1+... +yn+xn+1+U+yn+1

= (x1+Y1)+... +(xn+yn) +
< n

d+ I da + xn+1 + U + yn+1
acn

with da = da as in (1. 10). Here U and yn+l commute since all sum-
mands of U have the factor xn+1

With z0 = xn+l = Yn+1 a collection process yields
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(*) do + z = z + E do+1
acn a bcn b aci l a

and thus the sets Dn+l. Clearly all elements zb commute and they do
not appear twice in a commutator created by the collecting process. We
have to collect the sum at the left side of (*) in such a way that the index
sets appear in the right order <. Therefore we bring zb having index
set b u { n+1) to its place b u { n+1 1. This creates the commutators

[dn1, zb] for a1 c n and a1 > b u {n+1 ).
a

This commutator (created at place al) has to be brought to its place
a1 u b u { n+l J1. This creates the commutators

[[dn1, zb], dn2 ] for al < a2 < a1 u b u { n+1
a a

since we know a1 a1 u b u { n+1) . Inductively we obtain

do+1 = do if a c na a

and if a = u { n+1) , O #acn, we have

dan+1
= za + Z [[dnl, zb, dn2, ..., dnk]

a a a

where we sum over all b c a and partitions (a1, ... , ak) of b,

k > 1, with

bu {n+1}<a1<a2<...<ak and as<a1u...aas-1ubu{n+1)

for s = 2, ... , k. By definition of the relations it G all index sets
a are disjoint. We also know that the iterated coml, b, a2, ... , ak

mutator in (**) is multilinear in the summands of z0 and dni
a(i = 1, ... , k), compare (1. 14).

If we consider the set of summands of do+l in (**) we obtain:

(1. 16) Definition. Let < be an admissible ordering on P(N). We
define inductively over n subsets

D
n = D(xl, ... I xn' Y19 ... , Yn) c F'(x1, ... , xn, Y1, ... , Yn)
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Let D1 = 0 and assume Dk is defined for k:5 n, n ? 1. Then Dn+1
is the set containing [[xn+l, y1, ... , yn] and all brackets

[[d(al), b(b), d(a2), ... , d(ak)]

where
(1) b c n and (a', ... , ak) is a partition of n - b, k > 1, with

b u { n+1) < al < ... < ak and as < al a a2 u... u aS-1ubu { n+1 )

for s=2, ... , k.

(?) for a E {a2, ... , ak ) with a = {a1 < ... < a#a) the element
d(a) is any element in the set

D(xa,...,xa ,ya,...,ya ).
1 #a 1 #a

These sets are already defined by the inductive assumption,
compare (1. 9)'.

(3) for b = 0 empty b(o) is any of the two elements xn+1 and

yn+l and for b = {b1 < ... < b#b ) non empty

b(b) = [[xn+1, Yb , ... , Yb ].
1 #b

For the proof of (1. 10) we have still to check that da+1 as ob-
tained in (**) for a c n, a * n, has the property described in (1. 10),
that is, da+1 is given via convention (1. 9)' by Dl+#a' However, this
is a consequence of the inductive definition (1. 16) and of the assumption
that < is an admissible ordering on P(V). This completes the proof
of (1.10). //

(1. 17) Example. Assume < is the lexicographical ordering from the
left on P(N). Then we obtain the first examples of sets Dn as follows:

D2 = {[x2, Yl]),

D3 = {[[x3, y1, Y2]} U{[[x2, y1, 8]I6'E {x3, y3 ))

D4 [[x4, Y1, y2, Y3] ] U

{[d, 5116 E {x4, y4 ) and d E D3) U

{[[x3, Y2], [x4, y1]]).

If we apply formula (1. 13) we obtain the formulas for cn(x, y) in (1. 7)
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I
for n=2, 3, 4.

(1. 18) Remark. The example D4 shows that Dn might contain sum-
mands of cn(x, y) which are trivial over Q, for example [[x, y], [x, y]].
In fact the terms of Dn have more general significance in the expansion
formula of chapter II. For Whitehead products the bracket [x, x] need
not vanish as it does in a non graded Lie algebra over Q.

§ 2. The exponential commutator

In a similar way as we constructed the Zassenhaus terms we here
exhibit commutator terms for an exponential commutator.

(2. 1) Proposition. There exist integral Lie elements Rm n(x, y) of
weight m + n. homogeneous of length m in x and homogeneous of length
n in y, such that

R ( )e-xe-yexey
= IT ti e m, n .x, y) /(m! n!

n>1 m>1

Since we first take the product over m and then over n we
cannot expect Rm n(x, y) to be symmetric in n and m. The first
terms including weight 4 are:

R1 1(x, Y)=[x, Y]
,

R2,2(x, Y) = -[[x, [x, Y]], Y]

+ 2[[x, Y], [x, Y]]

Rm, 1(x, Y) = (-1)m-1[xm, Y]] (m > 1)

R1,n (x, Y) = [[x, yn] (n > 1)

(2. 2) Remark. By problem 1 p. 372 in [30] we know that

e-xw-Yex = e-Y+Q(x, Y) with
00

Q(x, Y) = Z [[-Y, xn]/n!
n=1

For e-y+Q(x, y)ey we can apply (1. 7) to get
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00 Q (x, Y)
e-xe-yexey = iT e

n

n=1

where Q1 (x, y) = Q(x, y) and

Qn(x, Y) = cn(-y + Q(x, y), y)/n!

I

for n > 2. These terms Qn(x, y) are homogeneous of length n in y,
however they contain summands of arbitrarily high weight.

We now show how to compute all terms Rm n(x, y).
,

(2. 3) Definition. A word p = al ... ak or a tuple p = (aI, ... , ak)

of pairwise disjoint subsets al c a with a= aI u ... u ak is a partition
of a. We say k = I p I is the length of p. Let Par(a) be the set of all
partitions of a c IN and let Par(n) = Par( 11, 2, ... , n) ). Moreover

let PAR(n) be the set of all tuples q = (nI, ... , nk) with ni E IN and
nI + ... + nk = n. There is a canonical function

# : Par(n) -+ PAR(n)

mapping (aI , ..., ak) to (#a" ... , #ak). Clearly
# { p E Par(n) I #p = (n1, ... , nk)) = n! /(nI ! )... (nk!) .

(2. 3)' Notation. If R(n) is a subset of Par(n) we denote with R(a)
(a c IN with #a = n) the subset of Par(a) obtained from R(n) by the
bijection D- ai (i = 1, ... , n).

Let H = FG(P(IN))/- be the group given by the relations [x, y] - 0

if x n y 0. For x E FG(P(IN)) the subset x c IN is the union of all
n n

letters xi in the reduced word x = xI I ... xrr with ni ESL, xi E P(IN)
(i = 1, ... , r). For the group H we prove the following lemma from
which we will derive the terms Rm n(x, y) in (2. 1):

(2. 4) Lemma. For any admissible ordering < on P(IN) there exist
subsets R(n) c Par(n) such that in H we have the equation

Yn +Yn-1 + ... + YI = _ ra
ac n
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I
where

Y. = I a
acn, j=Min(a)

(j = 1, ... , n) and where

ra = E [[al, a2, ..., ak]
(al, ... , ak)ER(a), k>1

is the sum of iterated commutators in H given by R(#a), see (2. 3)'. The

sums Y.
J

and ra can be taken in arbitrary order.

Lemma (1. 15) is responsible for the type of elements Yj above,
compare the proof of (3. 4) and (3. 5) in chapter II.

We use the notation

(2.5) [x1, ... , xn]] = [xl, [x2, ... , 1xn-1' xn]... ]] .

Moreover we define the brackets of length (n + 1)

[[x, Yn] = [[x, Y, ..., Y]

[xn, Y]] = [x, ... , x, Y]]

and the brackets of length n + m

[xn, ym] = [[[X
n'

Y]], ym-1]

In § 4 of chapter II we will prove:

(2. 6) Theorem. For any choice of an admissible ordering < on P(IN)
and of subsets R(n) c Par(n) as obtained in (2. 4) the elements

Rm n(x' Y) = E (m ! )m
kmli

[x mk y a ]]
(a l, ... , a k) E R(n) z k

(m1,... , mk)EPAR(m)

k>1
satisfy the equation in (2. 1).

The proof of lemma (2. 4) contains an inductive construction of the

sets R(n), n > 1, and thus gives a more explicit description of the com-
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mutator terms Rnl n(x, y) by (2. 6).
I

Proof of lemma (2. 4). We set R(1) = Par(t). Assume now we
have found sets R(k) C Par(k) (k < n) satisfying the proposition of
(2. 4). Then we obtain R(n + 1) as follows.

For a E P(N) with #a s n let ra = ra be defined as in (2. 4).
Since the ordering < on P(IN) is admissible we can apply the monotone

bijection a : n 2, 3, ... , n+1) to the equation in (2. 4). This way

we get
2 <

y = rn

j=n+1 ycii-+l, Min(y)=j ac { 2, ... , n+1) a

Now, for the construction of R(n + 1) we set up a collection process for
the left side of the following equation

rn + y =
rn+1

ac{2,...,n+1)a ycn+1 ac-n+-1 a
Min (y)=1

in such a way that we obtain a correct ordering of summands. If we bring
y to its place y we create the commutators [rn1, y] for a1 c { 2, ... , n),

a
a1 > y, at place a1. If we bring such a commutator to its place a1 u y
(where we know al u y > al since #(aI a y) > #al) we obtain the com-
mutators [[rn1, y], rn2] for a1 < a2 < a1 u y at place a2. Inductively

a a
we get, similarly as in the proof of (1. 10), ra+1 = ra if a c { 2, ... , n+1 )

and for ac 11, ..., n+1) with 1 a

n+1 = a + [[rn y rn rn ]a a a 2' ak

where we sum over all partitions (al, y, a2, ... , ak) of a with
1 Ey< a1 < a2< ... < ak, k> 1, and as> y u a I u... uas-1 for
s = 2, ... , k. The set of summands of rn+1 in (**) is the set R(n+1)
defined as follows:

(2. 7) Definition. Let < be an admissible ordering on P(IN). We
define inductively over n subsets R(n) c Par(n). Let R(1) = Par (1)
and assume R(k) is defined for k s n, n > 1. Then R(n + 1) is the
set of all partitions
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I

(r(al), y, r(a2), ... , r(a)), k > 0,

in Par (n + 1) with 1 E y c FT-1 and

y< aI < a2 < ... < ak

as < y u aI u ... u as-1 for s = 2, ..., k

and where r(aI) is any partition in R(a'), i = 1, ... , k. These sets
are already defined by the inductive assumption, compare the convention
(2. 3)'.

Again as in the proof of (1. 10) we have to check that (**) for
a # n+1 is compatible with the definition of R(n) in (2. 7). This follows

from property (ii) of the ordering in (1. 8). //

(2. 8) Example. For the lexicographical ordering from the left we
derive

R(1) (1) }

R(2) (12), (2. 1) )

R(3) (123), (23. 1), (3. 2. 1), (2. 1. 3) )

R(4) _ 1(1234), (234.1), (23. 14), (34. 12), (24. 13), (3. 2. 14),

(4. 3. 12), (4. 2. 13), (34. 2. 1), (3.2.4.1), (4. 3. 2. 1),

(2.1.3.4)).

Here we use abbreviated notation for a partition: For example (34. 2. 1)
denotes ( { 3, 4 ) , {2 } , {1 } ).

§ 3. A presentation for the exponential group

A group G or a Lie algebra L is nilpotent if there exists an
integer k > 1 such that an iterated bracket of any k of its elements
taken in any order is zero. In a group G the bracket is the commutator
and in a Lie algebra L the Lie product.

(3. 1) Definition. We say a nilpotent group G is a rational group if G
is uniquely divisible, that is G - G, x i-+ xn is a bijection for n $ 0,
n E 7. For each nilpotent group G there is the rationalisation G - G
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I
where GQ is a rational group with the universal property that any homo-
morphism G - H into a rational group H factors in an unique way over
Gq GQ is also called the Malcev completion of G, see [25].

Now let L be a nilpotent Lie algebra over Q. The Baker-
Campbell-Hausdorff formula yields a group multiplication on the under-
lying set of L, that is, see (1. 6),

(3. 2) x y = O(x, y) for x, y c L.

This group, denoted as exp(L), is a rational nilpotent group. Malcev

[31] (see also [12]) has shown that the construction exp : L i- exp(L) is

an equivalence of categories of nilpotent rational groups and Lie algebras
respectively. We deduce from (1. 7):

(3. 3) Proposition. Let L be a nilpotent Lie algebra over Q. Then
there is an unique group multiplication on L satisfying

x y = (x + y) TI c(x, y)/n!
n=2

for x, y e L and this is the multiplication given by the Baker-Campbell-
Hausdorff formula.

Moreover we know from (2. 1) that the commutator in exp(L)
satisfies the equation

(3. 3)' x TI n
Rm, n(x, y)

n>1 m>1 n! m!

Since L is nilpotent only a finite number of factors are non trivial.
For the special types of Lie algebras below we can deduce a new

presentation of the exponential group. The following non graded Lie

algebras appear naturally in homotopy theory.

(3. 4) Definition. Let C be a graded commutative co-algebra over Q
(of finite type that is, Cn is a finite dimensional Q-vector space, and let
C 0 = Q). Let n be a graded Lie algebra over Q with ir0 = Q. Then the
Q-vector space of degree zero homomorphisms

Hom4C, n)
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is a non graded Lie algebra with the bracket

o f®g [,]
[f, g]:C C®C - W®rr n.

For example the rational homology C = H*(X, Q) of a space is such a
coalgebra and the homotopy iT = it,,(StY) ® Q of a loop space is such a

Lie algebra. In chapter VI we shall prove that there is a natural iso-
morphism of nilpotent rational groups

(3. 5) [X, StY] exp HomQ(H*(X, Q), rr*(12Y) ®Q)

if H*(X, Q) is finite dimensional, (X, P Y connected).
For the proof of (3. 5) we will use the following characterisation

of the group multiplication on exp HomQ(C, ir).
Let A = Hom(C, Q) be the dual algebra of C in (3. 1), that is,

An = Hom(Cn, Q). Then we have a canonical function (n > 1)

n(3. 6) A x urn Hom(4 C, IT)

(x, a) H x ® a

where x ® a maps t to x(t) . a. The algebra multiplication induced
by 0 on A is denoted by u. Clearly the elements x 0 a generate
HomQ(C, Tr) as aQ-vector space. The group multiplication on
exp Hom4C, ir) can be characterized in terms of these generators. In

the next theorem we write the group structure in a free group multi-
plicatively.

(3. 7) Theorem. Let C and 7r be as in (3. 4) and let C or rr be finite
dimensional. The homomorphic extension of 41 in (3. 6) yields an iso-
morphism of groups

FG(u An x rrn)/- = exp HomC, 7r).
n> l ,y

The relation - is generated by

(1) )-1(x +a)-1 ((x ) - (x 2 y
) )), y, a y, a , [a, a

n
(2) (x, a)(x, $) - (x, a + R) . T1 (a, p))(n , c

n>2
n

28



(3) (x,

m n I
a)-1 (y, p)-1(x, o) (y, p) II II (x n! , Rm n(a, p))n>1 m>'

(4) (x, ra) - (rx, a) for r E Q
where x, y E A, a, p E lr. Clearly in (1) we have lx I = ly I = a I and

in (ii) we have l x l= I a l= 101.

We have (x, 0) - (0, a) - 1, so the products in (ii) and (iii) have
only a finite number of factors. In particular, if degree x I is odd we

know x2 = 0. Thus cn(a, (3) is needed only if I a l = 1,61 is even. In

this case, we evaluate c
n
(a, p) in the graded Lie algebra 7r. Similar

remarks apply to Rm n(a' p).
,

It is easily seen that tp in (3. 6) satisfies the relations in (3. 7)
since we have

(3.8) [x®a, y 0 0] = (x u y) 0 [a, 0]

for the Lie bracket in (3. 4). For this, it is important that Cn and Rm
n

are in fact homogeneous terms. This is the advantage of Rm n over
Qn in (2. 2).

Theorem (3. 7) can be proved along the same lines as (5. 9) in
chapter II.

¢4. The general type of Zassenhaus terms and its characterization
modulo a prime

We first generalize the Zassenhaus formula (1. 7) for the case of
more than two variables

(4.1) Proposition. There exist integral Lie elements cn(x , x2,... ,xk)
of weight n such that

1 kk
exIex2... ex =

exl+... +x
II

ecn(x ,... , x )/n!

n>2

These terms can be computed by the following lemma which
generalizes (1. 10):

Let

G = FG(xi k, i > 1)/_
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I
be the group given by the relations [a, b] - 0 if a n b # 0 The set
a c IN for a E FG(xi I j = 1, ... , k, i > 1) is the set of all lower indices

i of letters xi in a, written as a word in reduced form.

(4. 2) Lemma. For any admissible ordering < on P(IN) there exist
subsets

Dn C F(xi I i = 1, ... , n, j = 1, ... , k)

of elements of length n, n > 1, such that in G we have the equation:

(xi+... +xn)+(x2+... +xn)+... +(xk+... +xn) _

(x1+... +xk)(x1+... +xk)+... +(xn+... +xn) + da
2 ac n

where for a= {a1 < ... <ar ; c n the element da E G is the sum of
all iterated commutators d E Dr c F(xa i = 1, ... , r, j = 1, ... , k).

As in (1. 11) we have a function

(4.3) T:Dk -S ,
n n

T(d) is the permutation mapping i E n to the index of the i-th factor
(from the left) of d. By forgetting lower indices we have a mapping

(4.4) fi :F(xj Ii=1...n, j=1...k)-F(xl, ..., xk)

More general than (1. 13) we obtain:

(4. 5) Theorem. For any choice of an admissible ordering < on
P(IN) and of subsets Dn as characterized in (4. 2) the elements

cn(x1, ... , xk) = I k (D (d), n > 1,
deDn

satisfy the equation in (4. 1). Here 4)(d) denotes an integral Lie element
in L Z(x1 , ... , xk).

We can prove this result along the same lines as we prove (1. 13),

see II (2. 8).
For a set X we denote with FM(X) and FAG(X) the free monoid

and the free abelian group generated by X. For the free monoid generated
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by symbols x, -x with x e X we have the surjective map

(4.6) FM({x, EX}) 21FAG(X)

mapping a word xl... xk with xi c (x, -x j x e X) to the sum
x1 +... +x k. On the other hand the general Zassenhaus term
a function

I

cn yields

cn
(4. 7) FM( {x, -xlx E X 'J) - LA(X)

mapping the word x1... xk to the integral Lie element cn(xl, ... , xk

We have the following interesting property of c
n

:

(4. 8) Theorem. If n = pv is a power of an odd prime p then
(modulo p) cn factors over fr, that is, there is a function do such
that the diagram

FM({x, -x!x c X }) 7 FAG(X)

c v d v
p p

L (X) +9) Z/p Z

commutes.

In IV §3 we give a geometric proof of this result for v = 1.

Theorem (4. 8) is also a consequence of the following explicit
description of the Zassenhaus term modulo a prime: We consider the
inclusion

L7(X) - Tz(X)

For v E TZ(X) we denote with

v®1=v+)...9)v

the i-fold product in Tz(X).

(4. 9) Theorem. Let p be an odd prime. For x1, ... , x, c X we
have in TZ(X) 9) Z/p7L the formula
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I

c v (xlp

v

.. , xk)=
v v

xOp + ... + xk®p

- (xI + ... + xk)®p
w

c u(x2, ... , xk)-
u+w=v p
u, w?1

The theorem implies a result of Zassenhaus, namely that

v v v
X +... +xk®p - (xii +... +xk)®p

is in fact a Lie element mod p. In formula (63 page 93 in [44]) Zassenhaus
gives a description of this element in terms of brackets.

The formula in (4. 9) can be used inductively for an explicit des-
cription of the terms c

v.
For example modulo p

p
(4. 10) cp(x, y) = x®p + y®p (x + y)®p

2 2 2

c 2(x, y) = x®p + y®p - (x + y)®p
p

- (x®p + y®p - (x + y)®p)®p

cp(x, y, z) = x®p + y®p + z®1' - (x + y + z)®p

The formula in (4. 9) is motivated by the following calculation with homo-
topy groups. The notation is explained in chapter V.

Let (M*R*, ®, #, 'n, er) be the module of spherical homotopy
coefficients and let

L = n*(l xEX ESk) & R

be the homotopy Lie algebra of a wedge of spheres. For the set X we
have the canonical inclusion

X C LR(X) C L

where LR(X) is the free Lie algebra generated by X (non graded, we
assume k to be even). Let x, y, z be three elements of X. For
77 E Mk' j = [ESl' ESk]R and e E Mk' k (the identity of ESk) we have by
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composition O the elements x 0 77, y 0 77, z 0 e e L. For these
elements we consider the bracket

I

(4.11) B=[xG 77 +y®17, zOe]

in L. This bracket can be 'expanded' in two different ways as follows:

(4.12) B=[x077, zOe]+[yO71, zOe]

E [xn, z ]] 0 (Yn(71) # e)
n>1

+ , [yn, z]] 0 (yn(rl) # e), see II (3. 4)',
n>_1

([xn, z]] + [yn, z]]) 0 (Yn(f1) # e)
n>1

On the other hand by II (2. 8) and II (3. 4)'

(4.13) B=[(x+y)Or7 + cm(x, y)OyIn (rl), zOe]
m> 2

=[(x+y)Ot, zGe]+

[cm(x, Y) 0 Ym(77), z 0 e]
m> 2

[(x + Y)
n,

z]] 0 (Yn(71) # e)

n>1

+
[c (x, Y)n, z]] 0 (Yn(Ym(7])) # e)

m>2 n>1

For an odd prime p we know Y U(/' w(77)) = y u+w(77)' Assume now
p p p

that the Hopf invariant v(ti) It e is non trivial. Then the equations
p

above imply that modulo the prime p in LR(x, y, z):
v v v u

(4. 14) [xp , z]]+ [yP, z]] -= [(x + y)P, z]] + F [c w(x, y)p , z]]
u+w=v p
u .0
w>1

For ad (x)(z) = [x, z] we have adn(x)(z) = [xn, z]]. It is well known,
see [15, 30], that

(4. 15) [x9)p v, z] _ [xpv, z]] (mod p).
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Since T(x, y) - T(x, y, z), u -+ [u, z] is injective (4. 15) and (4. 14)

imply the proposition of theorem (4. 9).
Unfortunately we only know elements 71 with non trivial Hopf

invariants yp(r?) # e, p an odd prime, see IV. Therefore by the con-
sideration above we can prove (4. 9) only for v = 1.

However, if we consider the 'universal example' of the calculation
in (4. 12) and (4. 13), we obtain a proof of (4. 9) via homotopy theory in
general, see VI 63.
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II. DISTRIBUTWITY LAWS IN HOMOTOPY THEORY

We show that the Zassenhaus formula corresponds in homotopy
theory to the left distributivity law of the composition element

(a+a)°y
Furthermore, we exhibit a distributivity law for the Whitehead product

[a° a', R°l3']

of composition elements. This formula is related to the exponential
commutator

e-xe-yexey.

There is a long history of such formulas in homotopy theory. P. J.
Hilton gave an expansion of (a + l3) o y in his classical paper [23] which
for the first time expounded the importance of commutator calculus in
homotopy theory, see also [24]. A special case of our expansion formula
for [aa', /3/3'] was found by W. Barcus and M. Barratt [5].

The connection of these formulas with the Zassenhaus formula and
with the exponential commutator has not been noticed. Our expansions of

(a + (3) o y and [aa', 0(3'] are formulas in terms of James-Hopf
invariants. In this way we prove that the James-Hopf invariants deter-
mine the Hilton-Hopf invariants (a statement appearing various times
in the literature, [6], [13]).

As an application of the distributivity formulas we give a solution
of the following problem. Assume the suspension EX admits a decom-
position

EX ^, ., Eyi
iEJ

as a one-point union of suspended co-H-spaces Yi Then as a set the
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II
(in general) non abelian group of homotopy classes [EX, Z] is the
product of the abelian groups [EYi, Z], i E J. Describe the group struc-
ture of this product set!

In § 5 we show that the group structure is determined by standard
homotopy operations, namely Whitehead products, geometric cup products
and James-Hopf-invariants. In chapter VI we analyze the special case
of this result where all Y. are (local) spheres.

§ 1. Whitehead products and cup products

We recall some basic definitions. Throughout let a space be a
pointed space of the homotopy type of a CW-complex. Maps and homo-
topies are always base point preserving. The set of homotopy classes of
maps X -. Y is denoted by [X, Y]. It contains the trivial class

For the product A x B of spaces we have the cofiber sequence

(1.1) A'BC-I A xB

where A - B = A x 1 *1 u {*1 x B. The n-fold products will be de-
noted by An = A x ... x A and n = A ^ ... ^ A.

From the unit interval I = [0, 1] we define the 1-sphere
Sl = I/ 10, 1) and the n-sphere Sn = (Sl )^n. We have the comulti-
plication

(1.2) v S1

with µ(t) _ (2t, *) for 0 <_ t 2 and µ(t) 2t-1) for i <_ t < 1.
EX = S1 " X is called the suspension of X and the function space
62Y = { f : S1 - Y I f(*) = *) is called the loop space of Y. EX is a
Co-H-space and OX an H-space by the induced map

5 JA =JA ^X:EX - ZX'sX,
µ = Yµ : QY x 62Y - fly.

(1. 3) Definition. A space X together with a map p : X - X - X is
a Co-H-space when X -+ X - X c X x X is homotopic to the diagonal
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II
map. A space Y together with a map p : Y x Y - Y is an H-space
when Y - Y -+ Y X Y - Y is homotopic to the folding map. A map f
is an H-map or a Co-H-map respectively if

µ(fx or (f-f)p^-pf.

The maps p - X and Yµ induce the same group multiplication on the
homotopy sets

(1. 4) [EX, Y] = [X, 62Y],

which we denote by +. Inverses in these groups are defined by means
of the map (-1) : SI - SI with (-1)(t) = 1 - t.

If X is a Co-H-space or Y an H-space, (1. 4) is an abelian
group.

For a topological group or an associative H-space G we have
a classifying space BG and a group isomorphism

[X, G] [X, 1BG]

The group multiplication in [X, G] is induced by the multiplication on
G. Because of this isomorphism the results of this paper are applicable
to the groups [X, G]. Such groups were studied in [2, 3, 4, 28, 35].

The groups of homotopy classes are equipped with various well-
known operations. The first one we will describe is the Whitehead
product.

The cofiber sequence (1. 1) induces a short exact sequence of
groups

(1. 5) 0 -' [E(A ^ B), Z] [E(A X B), Z] - [EA, Z] X [EB, Z] -+ 0

Let p1, p2 be the projections of E(A x B) onto EA, EB. The White-

head product

(1. 6) [ , ] : [BA, Z] X [EB, z] - [E(A - B), z]

is defined by the commutator
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II

(E7r)*([a, 9]) = -pTa - p*6 + pia + p2/

for a E [EA, Z], 0 E [EB, Z].
The Samelson product

II ] : [A, OZ]x [B, B, nZ]

is obtained from the Whitehead product by (1. 4).
If A and B are Co-H-spaces the Whitehead product is a

bilinear pairing of abelian groups. If Z is an H-space the Whitehead
product is trivial, that is [a, f3] = 0 for all a, 0. The pairing is anti-
commutative:

(1. 7) [a, Q] = -(ET)* [0, a]

where T : A ^ B = B ^ A exchanges A and B. If Y1, Y2, Y3 are
Co-H-spaces the triple Whitehead products satisfy the following Jacobi
identity. Let Sn be the permutation group of { 1, ... , n ] and let
E:: Sn - {1, -1 ] be the sign homomorphism. For three permutations
p, Q, T E S3 with p3=1, cr3 = 2, T3=3 and yi E [EYi, Z] we have
in [EY1 ^ Y2 ^ Y3, Z]

(1. 8) 0 = c Tp*[[Ypl, Ypt], Y1]

+ 6 T*[[YQl, YQ2], Y2]
Cr Or

TTT[[YTl, YT2], Y3]+ e

Ta : EY1 ^ Y2 ^ Y3 - EYa1 ^ Ya2 ^ Ya3 is the permutation of the
factors for a E S3

If we consider the case where A and B are spheres, we obtain
the Whitehead or Samelson product on homotopy groups:

(1. 9) ITn+1(X) _ [ESn, X] = [Sn,
62X]

= 7rn(S2X).

If X is a 1-connected space, (1. 6) provides the graded homotopy group
n*(cX) with the structure of a graded Lie-algebra. However, neither
[a, a] for a E ir2n(nX) nor [[a, a], a] is necessarily trivial.

To fix notation we now define a general form of iterated Whitehead
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products. Let F = F(z1, ... , Zr) be the set of iterated brackets in the
letters z1, ... , zk, see I (1. 9). The length c I of an element c E F
is the number of factors in it. For a tuple Y = (Y1, ... , Yr ) of spaces

and a tuple a = (al, ... , ar ) of elements ai E [EYi, X] we define the
iterated Whitehead product

(1. 10) [a1, ..., ar]c E [EAc(YI,...,Yr), X], C E F(z 1, ..., Zr),

by induction on the length. For c = zi E F let AcY = Yi and [a]c = ai
For c = (a, b) E F let

A
cY = (Aay) ^ (AbY) and

[alc Raja' [alb]

Clearly AcY = A I cI for Y1 = ... =Y r = A.

(1. 11) Definition. We say X has codimension <_ N if all homotopy
groups 7rn(X) vanish for n >_ N. We say X has dimension s N if
X is homotopy equivalent to a CW-complex of dimension s N.

If all Yi are connected then EAc(Y) is l c i connected. Thus

for X with codimension s N all Whitehead products [a]c vanish if
c I > N. A similar argument yields a proof of a well known result of

G. W. Whitehead [43].

(1. 12) Proposition. Let X be a connected space. If X has finite
dimension or Y has finite codimension then [X, PY] is a nilpotent
group.

Proof. The commutator for f, g E [EX, Y] is given by

-f-g+f+g=[f, g]° (ElX)

where Ax : X -+ X ^ X is the diagonal. This follows directly from the
definition (1. 6). An iterated commutator of weight n thus factors over
the diagonal OX : X - X^n, which is null homotopic if n > dim X. //

If Y has finite codimension < N then for the N-skeleton XN
of X we have [XN, 12Y] = [X, 52Y], see [11].

39



II

From the definition of the Whitehead product we obtain the follow-

ing commutator rule in the group

[F, (XI x ... X Xn), Y]

For a= { aI < ... < ar } c n = 11, ... , n) let

pa : XI x ... X Xn - AXa = Xa ^ ... ^ Xa
I r

be the obvious projection. Then we have for a, b c n and a E [EAXa, Yj
and 6 E [EAXb, Y] the commutator rule

(1. 13) -a(Epa) - I3(Epb) + a(Epa) + P'(Epb) = [a, Q] Ta, b(Epaub)

where

a ^ AXbTai b : EAXaub - A X

is defined by Ta b(t, xaub) = (t, xa, xb) with xa = (xa ... , xa
' r

Clearly, if for i E a n b, Xi is a Co-H-space then Ta b 0, see (1. 21).
,

Further operations we need are the cup products.
The exterior cup products are pairings

(1. 14) #, # : [EX, EA] X [EY, EB] - [EX ^ Y, EA ^ B]

defined by the compositions

a#/3:EX^Y a Y EA^Y A- EA^ B

a
B

a ^ where A ^ 0 is the map lA ^ $, up to
the shuffle of the suspension coordinate. These products are associative,
that is,

(1.15) (a#/3)# y=a# (0 # y)

just as for W. Furthermore we have for the interchange map
TAB:A^ B=B^A
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(1. 16) (ETAB) 4 (a # p) = (p # a) ° (ETXy).

The pairings are linear in the following sense:

(1.17)
(a+a')#p=a#p+a'#p
a# (0 +p')=a#/3+a# p'.

Thus they are bilinear if # = #.

(1. 18) Lemma. If a or p are Co-H-maps then a # p = a # p.

II

Proof. If a or p are suspensions the proposition is trivial,
if not we use Ganea's diagram in the proof of (2. 7). //

(1. 19) Corollary. For compositions a' a and p' O we have

(a' o a) # (p' o p) = (a' # (3')(a # p)

if a or )3' are Co-H-maps. The same holds for W.

If A and B are Co-H-spaces and a or p is a Co-H-map
then a # p is also a Co-H-map. We might say that Co-H-maps form
an ideal with respect to the cup product.

The (interior) geometric cup products are defined by composing
with the reduced diagonal p : X - X - X,

(1. 20) u, u : [EX, A] x [EX, B] - [EX, EA I B]

where a u p = (a # p) (El), similarly for u. If X is a Co-H-space
these pairings are trivial since the reduced diagonal

(1.21)

is null homotopic in this case. Properties of # and # carry over to
u and u, in particular we derive from (1. 16)

(1. 22) (a a p) = (ETB, A) (p L' a)

In chapter III we study the properties of the cup product and the
Whitehead product in the particular case where the image space is a sphere.
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§2. Hopf invariants

Hopf invariants and higher order Hopf invariants are of great
importance in homotopy theory and were the subject of classical studies
of M. G. Barratt, I. M. James and P. J. Hilton. The suspended Hopf

invariants

An (a) = n-lyn(x)

were extensively analysed by J. M. Boardman and B. Steer in [13].
However, the nature of the higher invariants, for n > 3 in particular,
remains unclear. In this section we show that the invariants y(a) are
closely related to the Zassenhaus terms. In chapters III and IV we study
the Hopf invariants yn(a) where a is a mapping into a sphere.

For a connected space A let J(A) be the infinite reduced
product of James. The underlying set of J(A) is the free monoid genera-
ted by A - { * 11. The topology is obtained by the quotient map

u An -+ J(A)
n>0

mapping a tuple (x1, ... , x
n) to the word (rx1)... (rxn) where r*

denotes the empty word in J(A). Jn(A) = r(An) is the n-fold reduced
product of A and A = Ji (A) generates the monoid J(A). Let

i : A - QZA be the adjoint of the identity on EA. James [27] has shown
that the extension of i

g:J(A)-nZA
(2.1) !(

g'(xl... xn) _ (... (i(xi) + i(xz)) ... + i(xn))

is a homotopy equivalence. g induces the isomorphism of groups

(2. 2) [EX, EA] = [X, nZ A] = [X, J(A)], a - a

We now fix an admissible ordering < on P(IN), see I (1. 8). There are
mappings

(2. 3)

gr : J(A) -' J(A^r), (r > 1)

Xa ' ... ' xa
a i r
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where the product is taken in the fixed order over all subsets
a c { 1, ... , n) with #a = r. The James-Hopf invariants (with
respect to <) are the functions

Il

(2. 4) yr : [EX, EA] - [EX, EA^ r], r > 1,

induced by gr, that is ra) _ (gr),k(a). Clearly yi is the identity
by (iii) in (1. 8).

Let g : EJ(A) -FA be the adjoint of g in (2. 1). Then

Q. 5) gr = yr(g) : ZJ(A) - EAr

is the adjoint of ggr. It is well known that the sum

(2. 6) G= Z jr gr : EJ(A) .. SAr
r>1 r>1

is a homotopy equivalence, where jr is the inclusion of EA^r
into

the wedge. G is the limit of the finite sums.
If a is a suspension then it is easily seen that yr(a) = 0 for

r >_ 2. Co-H-maps a : EX - ZA need not be suspensions. They can

be characterized by

(2. 7) Proposition. Let X be finite dimensional. Then a : EX-FA
is a Co-H-map if and only if all James-Hopf invariants yr(a) are trivial
for r>_ 2.

Proof. As Ganea has shown in [18] the diagram

ZQ XF
ESZa

E ?EA 7J(A)I S ,

EX =
a

F,

Ei

A

homotopy commutes iff a is a Co-H-map. Thus the result follows
from (2. 6). //

If a is no Co-H-map we can measure the deviation of

11
EX -a. EA -- ZA - ZA
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from i1 a + i2 a by use of the following expansion formula which is
called the 'left distributivity law'. Here i1, i2 denote the two inclusions

of EA into FA - 'FA, so that p = it + i2.

(2. 8) Theorem. Let X be finite dimensional and let A be a Co-H-
space. Then

i1a + i2a = (i1+i2)a + z cn(il, i2) o yn(a)
n>2

where cn(i1 i2) E [EA^n, EA - ZA] is given by

cn(ii, i2) =
d D [ii9 i210(d) o TT(d)

n

The iterated Whitehead product is defined as in (1. 10). Dn and
T are defined as in I, §1, and for a permutation a E S

n
let

Ta(t, xl ^ ... ^ xn) _ (t, xQ ... ^ xQ)
1 n

be the corresponding permutation of factors xi E A.
More general than (2. 8) we have with the notation in I (4. 2),

I (4. 3) and I (4. 4):

(2. 9) Theorem. Let X be finite dimensional and let A be a Co-H-
space. Then for a E [EX, TA] we have in [EX, EA ' ... ' EA] the
equation

Il a + ... + lka = (i1+... +ik)o +' ' cn(ii' ... , ik) o yn(a)
n>2

where

cn(i1 , lk) deDk 1'1' ... , ']0(d) 0 TT(d)
n

Proof of (2. 8). Let R : FQY - Y be the evaluation map with
R (t, a) = Q(t). For the adjoint f : X - R Y of f : EX - Y we have

(1) f = R ° (Ef).

We consider the diagram
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v
n>1

i1g + i2g

where by use of (1) we have

(2) (i19+i 2
i) - (Ea) = ila + i

2
a

II

Since G is a homotopy equivalence, there exist mappings cn making
the diagram homotopy commutative. We have to show

(3) c = c (i , i ), c =i +i ,
n ri l 2 1 1 2

as defined in (2. 8). By use of

(4) yn(a) = yn(g-(Ea)) = yn(-g) o (Ea) = (gn)*(Ea)

the equation in (2. 8) follows from (2. 6) and (3). Now we know from (2. 1)

that

g(En) : EAn EJA - EA

is given by

(5) g(Ev) = (Ep1) + ... + (Epn)

where pi : An - A is the projection to the i-th coordinate. Therefore
we obtain

(6) (i19 + i2g)En = xl + ... + xn + y1 + , .. + yn

where xi = i1(Epi) and yi = i2(Epi).
On the other hand we know from the definition of

(2. 6) that

n <
(7) G o (En) = I I jr 0 (Epa)

r=1 acn
#a=r

gr
and G in
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where pa : An -A^r is the projection with pa(x) = xa "... ^xa .

1 r
The sum is taken in the fixed order on P(IN). By use of the commutator

rule in [EAn, LA - EA] we can now 'collect' the summands of (6)
(creating Whitehead products) in such a way that the newly ordered sum
obviously factors over (7). Since Er, is monomorphic (see (1. 5)) we

have therefore computed the terms cri The collecting is done in lemma
I (1. 10). Thus (2. 8) is proved. //

Hilton in [23] obtained another expansion of (i1 + i2)a.

For finite dimensional X and a connected Co-H-space A the
Hilton-Hopf invariants

(2. 10) he : [LX, EA] - [EX, EA^ I c l ]

for c E Q are defined as follows. Here Q is a set of basic commutators
with a fixed total ordering.

(2. 11) Definition. Let F(zi, z2) be the set of brackets in the letters
z1, z2 and let L(z1, z2) be the free Lie algebra (non graded over Q,
generated by z1, z2. There is an obvious mapping F(z1) z2)
L(z1, z2) which we suppress from our notation. By the Poincare-
Birkhoff-Witt-theorem a subset Q c F(zi, z2) can be chosen such that
{z1, z2 ; j Q is a basis of the Q-vector space L(z1, z2). In this case

Q is said to be a set of basic commutators.

We choose an ordering of Q compatible with the weight, that is
for c s c' we have I c I< I c' I.

The functions he are now determined by the formula:

(2. 12) (i1+i2)a = i1a + i
2
a + C [ii, i2]C o hc(a)

CEQ

in [EX, LA - LA]. Summation is taken over the fixed total ordering
of Q. The Hilton-Milnor-Theorem (see 4. 7 [23]) shows that such
functions hC exist and are well defined by this formula.

Clearly, a is a Co-H-map that is (i1 + i2)a = i1a + i2a, if
and only if all Hilton-Hopf invariants hc(a) = 0 vanish. Thus (2. 7)

shows a connection with the James-Hopf invariants, in fact we deduce
from (2. 8) inductively.

46



II
(2. 13) Corollary. Let X be finite dimensional and let A be a Co-H-
space. Then for a c [EX, FA] the iterated James-Hopf invariants

Yn Yn
Yn (a) determine all Hilton Hopf invariants hc(a).

1 2 r
Proof. cn(ii, i2) can be written as a sum of 'basic commutators'

and we can apply (2. 8) inductively. In this way we obtain from (2. 8) a sum

as in (2. 12). By uniqueness of hc(a) we have the conclusion of (2. 13). //

Suspended versions of (2. 13) were proved by M. Barratt [6] and
J. M. Boardman-B. Steer [13].

(2. 14) Proposition. Let X, A, B be connected spaces and let
a E [EX, EA] and /3 E [EX, EB]. If A = EA' is a suspension we have

Yn(a a $) = T o ((Yna) u n)

where 0n = p u ... u (3 is the n-fold cup product and where
T : EA

^ n ^ B^ n
- E (A ^ B) ^n is the shuffle map.

Proof. This follows from the homotopy commutative diagram

a ^ 1
X^X J(A)^X

a^1

where p(aI... ar ^ x) _ (a1

J(A ^ X)

x)... (ar ^ x). //

(2. 15) Proposition. Let y-n be defined with respect to the lexicographi-
cal ordering from the left and let a, j3 E [EX, EA]. Then we have for

n-1
n-1

Yn(a + Q) = Yna + Yn-i(a)
U

Yi(o) + Yn(R)
i=1

Proof. Let µ be the multiplication on J(A). The proposition

follows from the equation, f1, f2 E ['E (JA X JA), EA^n],
n

fi
= gn(EN)

_

_ = gigs a gn-iq2
=f

2i=0
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where q1, q2 : E(JA x JA) EJA are the projections. Now let

nN:AN=Ax...

be given by nN(xl, ... , xN) = xl ... xN and let 71 = s(nN x

It is enough to prove f1 ° n = f2 ° n for all N, M. In

[E(AN X AM), EA^n] we have
n < <

f °n= I I I2

i=0 Wa=n-i #b=i
acN bcM

On the other hand

fn pB
BcN+M
#B=n

(page) u (pbg2)

We sum in the lexicographical ordering. For a = { a1< ... <ar )c N =
{1, ..., NI let

p = AN -' EA^ r
a

be the projection pa(t, x1, ... , xN) = (t ^ xa ^ ... ^ xa ).
1 r

It is a property of the lexicographical ordering that the sums
f1 ° n and f2 ° n coincide. Thus (2.15) is proved. //

For n, m > 1 let T(n, m) be the set of all partitions

A = (al, ..., am) E Par(n m)

of m with #al = ... _ #am = n and with Min(al) < ... < Min(am).
See (I. 2. 3). The function 0 : Par(nm) -+ Snm is the shuffle permutation

(see § 3).

(2. 16) Theorem. Let yn be defined with respect to the lexicographical

ordering from the left. Let X be finite dimensional and let Y be a
Co-H-space. For a E [EX, EY] we have

"myn (a) = Tn, m ° "nm(a)

where
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Tn' m AET(n, m) T0(A)

with Ta for or c Snm as in (2. 8).

Compare III (5. 2).

§3. The Whitehead product of composition elements

Consider the compositions

a : EA + EX Z

77,6 : EB
Q

EY
77

Z

II

where A, B, X, Y, Z are connected spaces. In this section we prove
an expansion formula for the Whitehead product

[ta, 7i/3] E [EA ^ B, Z]

This formula yields a proof of the commutator formula I (2. 6).

(3. 2) Proposition. If a and R are Co-H-maps then

[ca, 770]=[5, 77]° (a#a).

Proof. The proposition follows from

77 ] = [ ° R(Ea), il]

=[ERR, 1]o (E-aY)

= [ERR, fl ] ° ((Ei) ^ Y) o (a' ^ Y)

_ 77] ° (a ^ Y) 77](a ^ Y)

where Ea = (Ei) ° a by use of Ganea's diagram in the proof of (2. 7),
here also (1) in the proof of (2. 8). //

We have canonical shuffle permutations

0, 1 : Par (n) - Sn

to the permutation group Sn of n. For a partition a= (a1,... ,ar)EPar(n)
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of n we write as usual a' = { ai < ... < ae ) where ei is the

number of elements of a'. Then

0(a)(e1 + ... + ei-1 + j) = a'

1(a)(e + ... + e + j) al i-1
el.- j+1

for j = 1, ..., ei and i = 1, ..., r.
For and 17 in (3. 1) we have as in I (2. 5) the iterated brackets

[,n, 77m] = [[[,n, 7]], ,m-1] E [EX^n ^ Y^m, Z]

For i = (i1, ... , ir) and j = (j , ... , j) with it + ... + it = n,
j

1
+ + jt = m let

^i ^j ^i ^j
TX 'Y EX 1 Y 1 ^ ... ^ X r^Yi,j,j

be the obvious permutation of factors collecting X and Y coordinates
respectively.

For a permutation Q E Sn let

TY : Y^ n y Y^ n
or

be the associated permutation of coordinates,

T? (Y11 ... , yn) = (YQ1 ' ... , yorn).

With this notation we can state the expansion formula

(3. 3) Theorem. Let X and Y be Co-H-spaces and let A and B be
finite dimensional. Then we have in [EA ^ B, Z] the formula

{ a, 7113] RM, N(4' n) ° (YM(a) # YN(Q))
N>1 M>1

where

RM,N(, 77) E [EX^M ^ Y^N, Z]

is defined by
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M-r #x1 #a2 #xr #arRM N(, 71)= (-1) [[[ 11-x a
' aER N), xEPar(M) '

lal = lxi = r>1

with Tx,a =
X#Xa ° (ETXx) ^ T (a)

Clearly if X and Y are spheres, Tx a is just a sign. The

theorem is a generalization of the following Barcus-Barratt formula:

(3. 4) Proposition. Assume A is a Co-H-space and assume B has
finite dimension. Then the Whitehead product of

ZA Z

ZB ZY '7 Z

satisfies the formula

[C, i7/9] = E [[r, 77n] ° (A ^
n>1

This formula was proved by Barcus-Barratt [5] in case A and B are
spheres and by Rutter if A and B are suspensions. In fact only A
needs to be a Co-H-space. In [7] we show that (3. 4) is a special case of
a whole series of similar formulas for Whitehead products and Hopf
invariants.

We derive from (3. 4) by (1. 7) and linearity of the Whitehead
product

(3. 4)' Corollary. Let A and B be Co-H-spaces of finite dimension,
then for (3. L) we have

[Ca, 1i3] = E ((-1)M-1[CM
N>1

where

n N]) ° (YM(a) # YN(p))

M> 1

YM(a) = (FTX) ° YM(a) with T = (M... M) E SM.

Unfortunately formula (3. 4) is not available for our intended
expansion of [(a, 77a] since in §5 we are not allowed to assume that
A or B is a Co-H-space. We therefore prove the more sophisticated
version (3. 5) below from which we will deduce a proof of (3. 3).
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(3. 5) Proposition. Assume Y is a Co-H-space. If B has finite
dimension the Whitehead product of

EA Z

18 EY . ZEB

satisfies the formula

with

R, 710] = E : Ka
n>1

r=laj

Ka #arl
° T(1), 'a ° ((EOa) # (T-

where Da : A - A^ I a I is the reduced diagonal and (1) = (1, ... , 1),

T= ET.

Proof of (3. 4), (3. 5). Let Z = ZA - FY and let C, 17 be the

inclusions of EA and EY into Z respectively. Let

(1) gy : F,J(Y) - EY

be the adjoint of the homotopy equivalence J(Y) - SZEY in (2. 1). For the
adjoint : B - J(Y) of /3 we have the formula

(2) 77j3] 17 gy ° (ZA ^ Q)

since j3 = gY ° (E/3).

Now let s : Yn - Jn(Y) c J(Y) be the quotient map with

s(yl ...' yn) = y1..... yri We used already several times the fact that
the composition

gY(Es) EYn - EJ(Y) EY

satisfies

(3) gy(Es) = p2 + ... + pn

52



U
where pi : EYn _ ZY is the projection onto the i-th coordinate.

From the definition of the Whitehead product in (1. 6) we derive
that the mapping

F, (A x Yn) E(A ^ J(Y)) EA " Y = Z
9 R, n]gY]

with (EA ^ s)(Ev) is the commutator

(4) U = *[a, ngY] _ -PA - (p1+... +pn) +pA + (pl+... +pn)

where now

PA 7,(A x Yn) - EA 4 Z

Pi : E(A x Yn) -+ EY 42 Z

are given by the corresponding projections onto the factors of the product
A x Yn. On the other hand we have the homotopy equivalence

(5) E(A ^ J(Y)) -4. " ZA ^ Y^r
r>1

which is given as in (2. 6). Let jr (r > 1) be the inclusion of EA ^ Y^ r.

Then G is the limit of
N

(A ^ gGN = jr r
r= 1

where gr is defined as in (2. 5), that is

gr = g(Egr) EJ(Y) EJ(Y^ r) Y^ r.

From the definition of gr in (2. 3) we see
n <

(6) G9 = Z E _ jr 0 (rpa)
r=1 acn

Wa=r

where irpa : E(A x Yn) -+ EA ^ Y^r is given by

7Tpa(t, X, Y) = (t, x, Ya ^ ... ^ Ya
z r

for a = {a1 < ... < ar ; , x e A, y e Yn, t E I.
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The sum in (6) is taken in the fixed admissible order over all
subsets a of n= {1, ... , n).

By use of the commutator rule (1. 13) in [E(A x Yn), Z] we now
can 'collect' the summands of (4) (creating Whitehead products) in such
a way that the sum obtained obviously factors over (6). This yields the
result since P is a monomorphism. First we get from lemma I (1.15)

(7)

U=-pA-Pn-... pi +PA+pl +...
i

(A, y)
i=n ycn

Min(y)=i

+pb =

with

(A, Y) = [[PA' pyl' ... ' py#y].

Here [ , ] denotes the commutator in IF, (A x Yn), Z]. Thus the com-
mutator of (A, y) and (A, x) is trivial if A is a co-H-space or if Y
is a co-H-space and y n x is non empty. Therefore proposition (3. 4)
is a consequence of (7) and (6). However, under the assumption of (3. 5)
the sum (7) is not yet in order <.

Collecting once more we obtain in lemma I (2. 4) the formula

(8)
U=

(A' p)a
ycn aeR(y)

where for a = az ... ar

(A, p)a = [[(A, a1), ... , (A, ar)]

is the iterated commutator. A subset y c n yields the projection

py : E(A x Yn) * Z(A X Y#Y)

as in (6). From the definition in (0. 17) we now see that

(9) E (A, p)a = ( E (A' p)a) . py
aER(#y)

Therefore by use of (8) we get
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(10) U= ( (A, p)a) o py
ycn

where we now sum in the fixed order over all subsets y c n. As in

(1. 13) the commutator (A, p) a coincides with the composition

(A, p)a = Ka7r : E(A x Yn) -+ EA ^ Y^n - Z.

Therefore the proposition in (3. 5) follows from (6). //

Proof of (3. 3). We use the same notation as in the proof of
(3. 5). Instead of (2) we now consider

^ )(11) R a, 17i9] = RgX, 77gy] o 1;(a

II

where ( and 17 are the inclusions of EX and ZY into Z = ZX - EY
respectively. As in (4) we obtain for the composition

E(Xm X Yn) E(J(X) " J(Y)) _ - _ Z

77gy]

the formula

(12) U= *[CgX,

where p = pl +... +pn , q = q1 +... +qm
are sums of all projections

gi:E(XmXYn)_EX`,,Z

pi : E(Xmx

(i = 1, ... , m), (J = 1, ... , n).

In the group [E(Xrn X Yn), Z] we derive as in (7) the formula

(13) [q,
xc m

#x=ral

(-1)r-1[qx , qx , ... , qx , pj]]
r r-1 1

where we can sum in arbitrary order. Furthermore we have for

J = (J1' ..., Jk) by use of (1. 13)

(14) (q, j) = [[q, p , p , ..., p
j
1= z

J1 j2 k xcm
#x=r>1

(-1)r-1[x,
J]
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with [x, j] = [[[q , ... , q , p , p. , ... , p. ].

xr XI
11
]]2

lk
If we set pA = q in (7) we know from (8)

(15) U= [[(q, a'), ... , (q, ar)].
ycn aER(y)

IaJ=r

Using multilinearity, (1. 13) and (14) we deduce

(16) U= e[[[xl, al], ... , [xr, ar]]
ycn aER.(y) x1, ... , xrcm

IaI=r
1 r

with e = (-1)#x +... +#x -r

Here we sum only over all tuples x1, ... , xr of non empty sub-
sets of m which are disjoint. The sum over the indices y c n is taken
in the fixed order. If we fix y, the remaining partial sum can be
taken in arbitrary order. We therefore get

(17) U = Y I (-1)(#x)-r[{[x1,
al], ... , [xr, ar_

ycn xcm aER(y)
i r

x U...ux =x
r=JaJ

where we take the sum over y and over x in the chosen order. As in
(9) and (10) we get from (17) the result in (3. 3) since we have by use of
(17)

< <
(18) U=

RN, (qx U py)
yCn xcm

#y=N #x=M

where

px E
(Xm X Yn) - EX^ (#x)

py : E(Xm X Yn) - EY^ (#y)

are the projections onto the coordinates in x c m or y c n respectively.
RN M is defined as in (3. 3). We use the fact that

,

I gM #1 gNY : E(J(X) ^ J(Y)) - " EX^M " Y^N
N>1 M>1 M, N
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is an equivalence, compare (5) and (2. 6). //

§ 4. Proof of I (1. 13) and I (2. 6)

Let L(x, y) be the non graded free Lie algebra over Q genera-
ted by x and y. We construct embeddings of non graded Lie algebras

(4. 1) ty L(x, y) c L' = HomQ(T(z), L(z1, z2)) ,

(4. 2) 0 : L(x, y) C L" = HomQ(T(u1) 0 T(u2), L(u1, u2))

(4. 3) here T(z) = H*(J(Sn), Q)

is the free graded tensor algebra generated by an element z of even
degree n and L(z1, z2) is the free graded Lie algebra over Q genera-
ted by z1 and z2 with degree n = zi I =

z2 1. T(z) is a coalgebra
with the diagonal

a T(z) -+ T(z) 0 T(z)

0(z)=10z+z®1

which is an algebra homomorphism, thus
n

(zn)
= n (n)zk zn-k

k=0 k

In (I. 3. 4) we saw that the Q vector space of degree zero homomorphisms
HomQ(C, n) is a non graded Lie algebra. Now we can define ip to be

the Lie algebra homomorphism with

1P (x) = 2 0 z1, p'(Y) = 2 9) z2

where 2 T(z) - Q maps z to 1 and maps zn to zero for n * 1,
compare I (3. 6).

In a similar way we define the embedding ¢: Let u1 and u2
be elements of degree n and m respectively where n and m is even.
Then T = T(u1) ® T(u2) is a graded coalgebra with the diagonal

o T ®O T(uI)9) T(u1)0T(u2)0T(u2)
T

T9) T
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where T is the switch of the terms in the middle. We have a coalgebra
isomorphism

(4. 4) T(ul) 0 T(u2) = H*(J(Sn) x J(Sm), Q).

The embedding 0 is defined to be the Lie algebra homomorphism with

$(x) = ill 0 U1, )(Y) = {a2 9) u2

where fit, f12 : T -+ Q map u1 9) 1 to 1 and 1 0 u2 to 1 respectively
and map all other elements un g) um to zero.

Looking at the images of basic commutators we see that 0 and
are actually embeddings. We remark that

(4. 5) L(u1, u2) = n*(S2(ESn , ESm)) 9) Q

For each N we have the mapping

(4. 6) IrN : PN = (Sn)N - J(Sn)

which is the restriction of the identification map n in (2. 1). They induce

mappings of Lie algebras (see (4. 3) and (4. 4))

(4. 7)

sNM (IN" "M)*«

with the property

(4. 8) Lemma. Let f, g c L'. Then f = g ill sNf = sNg for all N.
Similarly, let f, g E L". Then f = g iff sNMf = sNMg for all N, M.

For a Lie algebra L let L - aL be a quotient map where AL
is a nilpotent Lie algebra and assume that

sN
)L(x, y) c AL' - LPN

(4. 9)
)L(x, y) C )L" - LPNM

0 sNM

L' -+ LPN = Hom(H*(PN, Q), L(zl, z2))
sN

nN*

L" - LPN M = Hom(H*(PN x PM, Q), L(zl, z2))
,
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are maps induced by (4. 1), (4. 2) and (4. 7). For the proof of I (1. 13) it
is enough to prove that equation I (3. 3) holds in the group exp(AL(x, y)).
Similarly for the proof of I (2. 6) it is enough to show equation I (3. 3)'
in the group exp(AL(x, y)). Because of (4. 8) we have to prove that the

images of these equations under (4. 9) are in fact equations in LPN,
LPNM for all N, M.

Now let P be a product of spheres of even dimension ni > 2
with the product cell structure given by the cell decomposition
Sn = en u {basepoint 1 of Sn. For each cell e in P we have the
canonical projection pe : P : 51

l which is of degree 1 on e. We
denote the cohomology class given by p

e
by e.

(4. 10) Proposition. There is an unique isomorphism of rational nil-
potent groups

exp Hom(H*(P, Q), 1r*(c2Z) E) 9 [EP, zi

with (T(e 9) a) = a° (Epe) for all cells e in P and a E 7TI e I (SZ Z) O Q
a E [ESI e l , Z] Q is the adjoint of a.

See I (3. 1) and I (3. 6). The proposition follows since the group
structure exp satisfies the same commutator rule as we found in (1. 13).

If n is even we know that for a E 7rn(S2Z) 9) Q the bracket [a, a]
is trivial. Therefore for all u, v c Hn(P, the bracket

[ug)a, vE)a]=(uuv)®[a, a]=0

is trivial. Thus the elements { u 0 a I U E Hn(P, 9) ) generate an abelian
subgroup of

exp(H,k(P, Q), a,k(i Z) 9) 9) .

This proves

(4. 11) Lemma. Let u : Hn(P, Q) - Q be a homomorphism. Then the
isomorphism a in (4. 10) satisfies

a (u 9) a) = I (u(e) a) ° (Epe)
e
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where we sum over all cells e of dimension n in P. For summation
we can choose any ordering.

Proof of I (1. 13) and I (2. 6). Let pi : PN Sn be the pro-
jection onto the i-th coordinate (i = 1, ... , N). We define

a=(Ep)+...

Let ii, i2 : ESn 4-+ ESn , ESn be the inclusion. By use of (4. 11) we get

for the homomorphism in (4. 9) and (4. 10)

(1) crsN;px = vsN(R z1)

= (7IN R 19) z1)

= 11 o a

(2) asNipy = i2 0 a

with c1(i1, i2) = it + i2 we derive from (2. 8) the equation

(3) Y) = i1a + i2a

ck(il ' i2) 0 Yk(a)
k>1

On the other hand

(4) Y)/k!) _

(5) = osN((fkk/k!)
CD

ck(z1, z2)), compare I (3. 8),

(6)
n* (:R) k

= r( k & c ))(z zO
! k 1, 2

(7) ) C (Ep )= E ck(il, i

(8)

e2
e

= ck(i1, i2) O Yk(a).

(4) and (5) follow from the definition of :7, and sN. (6) is a consequence
of (4. 11), we sum in (6) over all cells of PN of dimension in the

chosen order. From the definition of Yk and a we derive (8). From
(3) and (8) and the remarks following (4. 9) we deduce the proposition of
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I (1.13).
In the same way we prove the proposition of I (2. 6). Let

it a, i2/3:EPN M - ESn ESm

II

be given by a = (Epi + ... + EpN) and r, = (Eq1 + ... + EqM) where
pi and qj are the projections onto Sn and Sm respectively. Then we

know as above

vsNMO(x-iy-Ixy) = -ii a - i2. + it a + i2.6

= [i1 a, i213] ° (r, 20 ,

where we use the formula in (1. 12). From (3. 3) we now derive I (2. 6). //

§5. Decomposition of suspensions and groups of homotopy classes

We study here the group [EX, Z] in case EX is decomposable
as a wedge

EX c " EYi

where all Y. are Co-H-spaces.
In the following all spaces X, Z, Y. are path connected. Let

Y = (YiI i E J) be a family of Co-H-spaces and let

(5. 1) Y = IYi = Yi I ... "Y. I i E J )
1

be its associated family of smash products where i = i1... ik E J=Mon(J)
runs through all words with letters ii, ... , ik E J, k > 0. From Y
we obtain families of groups

[EY, Z] = ([EYi, Z] I i E J),

[EX, vi] = ([EX, EYi] ! i E J).

The Whitehead product [ , ], the geometric cup product u and the Hopf
invariants yr are additional structures on these families of groups.
Again for the definition of yr we choose an admissible ordering of P(IN).
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[ , ] : [EY, Z] x [EY, Z] -+ [E-k, Z]

(5. 2) u : [EX, EY] X [EX, EY] - [EX, EY]

yr [EX, EY] - [EX, FY]

Let i = I x I= I a I be the degree of a E [ZYi, Z] or x E [EX, EYi]
with i c J and let i' be the degree of a', x'. Then [a, a'] and x u x'
have degree ii' and yr(x) has degree it = i ... i, the r-fold product
of i.

If Z is an H-space the pairing [ , ] is trivial and if X is a
Co-H-space u is trivial.

(5. 3) Assumption (*). Let X and 62Z be connected and let X be
finite dimensional or Z be finite codimensional.

The assumption implies that iterated Whitehead products, iterated
cup products or Hopf invariants yr are trivial for sufficiently large r.

We are interested in the subgroup of the group [EX, Z] which is
generated by all mappings

EX - EYi -Z, i J,
factoring over a space of the family Y.

This subgroup is the image of the natural group homomorphism

(5. 4) p : [EX, Elk, Z] - [EX, Z]

which we now describe. The disjoint union

E = u [EX, EYi] x [EiT , Z]
iEJ

is the set of generators for the group

[EX, EY, Z] = FG(E)/.

The relation - in the free group FG(E) on E is generated by the
relations (i) ... (iv) below. On generators (x, z) E E the homomor-
phism p in (5. 4) is given by composition
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(5. 5) p(x, a) = a 0 X.

The relations on FG(E) are defined in terms of generators e E as
follows :

II

(i) (x, a) (y, a) (x + Y, a)
(ii) (x, o) ' (x, R) (x, a + j3) II (Ynx, cn(c' j3))

n>2
(iii) (x, a)- I (Y, a)-' (x, 0-1)(Y' Q)

II II (Ymx u Ynn' Rm n(a, ))
n>1m>_1 '

(iv) (i o x, a) ~ (x, a o i) for ri a [EYIxI, EYIaI]

for x, y e [EX, Elk] and a, r - e [EY, Z]. In (i) we have I x I= I y I= I a I

and in (ii) I x I = I a I = 10 1.

These relations look similar to those of the exponential group
I (3. 7), however their meaning is slightly more general. The Zassenhaus
term c(a, (3) here is that of (2. 8) and the term Rn m(a, 0) is defined

in (3. 3). In fact it is an easy consequence of (2. 8) and (3. 3) that p is a
well-defined homomorphism of groups. Here we make use of the com-
mutator equation

(5. 6) -a o x - R o y + a o x+ R o y= [a o x, Q o Y] o (EO),

compare the proof of (1. 12).

We point out that the group [EX, Elk, Z] depends only on the
structure maps (5. 2) and on composition with elements in [EYi, EY.]
in (iv). Clearly [EX, EY, Z] is an abelian group as is [EX, Z] if X
is a Co-H-space or Z is an H-space.

We now describe a condition under which the homomorphism p
in (5. 4) is actually an isomorphism.

(5. 7) Definition. Let Y = (Yi I i E J) be a family of Co-H-spaces. We
say a suspension EX has a Y-decomposition, if there exist in E J,
(1 <_ n < N < o), and mappings kn : EX -+ EYi so that

N
I in

0
: EX - v Elk

n=1 n n n=1 In

n

is a homotopy equivalence. Here jn denotes the inclusion of Y. into
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II
the wedge.

(5. 8) Remark. If N = oo we assume that for n - oo the connectivity
of Yi also tends to infinity. f is the limit of the finite sums in this

ncase.

(5. 9) Theorem. Let X be finite dimensional or Z be finite codimen-
sional. If EX admits a Y-decomposition,

p : [EX, vi, Z]- [EX, Z]

is an isomorphism of groups.

Clearly if a Y-decomposition of EX is given we have a
bijection of sets

N
(5. 10) * : [EX, Z] z x [EYi , Z]

n=1 n

Because of (5. 8) this is a finite product.

(5. 11) Example. The suspension of a finite product of Co-H-spaces
Y. has the Y-decomposition

N
E(x Y.) = Y. " ... " Y.

i=1 1<ii< ... <i t<_N 1 lr
r>1

a result of D. Puppe, Math. Z. 69, 299-344 (1958). The loop space

nZY for a Co-H-space Y has the decomposition

E (SZEY) EYE n
n>1

Proof of (5. 9). First we observe that all cosets of
G = [EX, Elk, Z] are represented by words
(1) (x1, al) ... (x, ar) of generators (xi, a

i
) E E. This we

know since by (i) we have
(2) (x, a)-I - (-x, a) and (x, 0) -, 1.
We say a coset g E G has length L(g) < r if it contains a word of genera-
tors as in (1) of length r. We now prove inductively the
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(3) Proposition. Each g E G contains an element of the form
N
TI (fin, an)

n=1

with an E [EYi , Z] and with to as in (5. 7).
n

First we see this for L(g) = 1. In this case we know for a
generator (x, a) E g from (5. 10) that

N
(4) x = I On E [EYi , EY

I x
I ].

n=1 n

Thus we get from (i) and (iv) the relations:
N

(5) (x, a) - (1 an En, a)
n=1

II

n (on fin, a)
n

n (fin, On)
n

Assume now (3) is proven for all g' E G with L(g') L, L > 1. Then

clearly g E G with L(g) = L + 1 is representable by r E g with
N N

(6) r = (n (ii, ai)) (11 (ci, a!))
i=n i=n

By inductive use of the relations (i), ... , (iv) we now prove

N
r - n al)

i=n

for certain elements a".i
We may assume that all spaces Yi are CW-complexes with

skeleta y r and Yi = *. We say (x, a) E E has connectivity
0(x, a) > r if a factors up to homotopy over the quotient map nr

7T -r-1a : EYIa! ~ E(YIaI'YI I-Z
Clearly 0(x, a) L- 1 for all (x, a) E E since we assume all Yi to be
connected. Since EYi = FY

i
.... . Y. is r-connected we know thati ir

each (x, a) with I x I = I a I = i has connectivity 0(x, a) > r.
For the terms in the relations (ii) and (iii) we obtain by use of
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properties of the Whitehead product, see (3. 4):

(7) For 0(x, a) > r and 0(x, p) > s we have

0(yn(x), Cn(a, 0)) > r + s for all n > 2.

(8) For 0(x, a) > r and 0(y, p) > s we have
0(-,,(x) u -"n (y), Rm n(cx, p)) > r + s for all m, n > 1.

Furthermore, we obtain by the cellular approximation theorem

(9) If 0(x, a) r then for all terms in (5) we have

0(4n, cvpn) ? r, n = 1, ..., N.

If for r in (6) we know that 0(i, ai) > r and O(i, a!) > s for all
i = 1, ... , N then we can derive from (ii) and (iii) a relation

N
(10) r - (II (t., a+a'.))' II (a , b

i=1 1 1 1 \EA

where 0(a,, b) > r + s and where A is a certain ordered index set
(ax, b a E. By use of (5) and (9) we now see that

N
(11) (a,, b TI (fin, bV pn)

n=1

with b n) r + s.

Now using the collecting process in (10) repeatedly we arrive by induction
at an equivalence

N
(12) r a)

i=1

since the connectivity of the terms (a,, b becomes bigger at each step.
By (5. 3) the process is finite.

The proposition (5. 9) is now easily verified. Clearly p in (5. 4)
is surjective. p is also injective since for g c Ker p we have by (3)
an element

11 (fin, an) e g
n=1

and thus
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N
P(g) = F ano to=0

n=1

II

Since is a homotopy equivalence we see that an = 0 and thus g = 1
by (2). //

67



III. HOMOTOPY OPERATIONS ON SPHERES

We consider the generalized homotopy groups [EX, ESn] of
spheres ESn where EX is the suspension of a finite dimensional poly-
hedron X. These groups have additional structure, namely Whitehead
products [ , J; cup products u, James-Hopf-invariants yn and com-
position We exhibit the distributivity properties of these homotopy
operations. In other words we give explicit formulas for

[o0 a',

(a+a')o
au/i-(-1)la!1/31/3Ua

yn(a) U ym(a)

ynym(a), yn(a + p), 'n(a U R),

yn(a G /3)

In this chapter the Hopf invariants yn are always defined with
respect to the lexicographical ordering from the left.

§1. Spherical Whitehead products and commutators

We call a mapping f spherical if f maps into a sphere. The
following spherical Whitehead products are of particular importance.

(1. 1) Facts. The generator jn E Vn+l(ESn) = 7L has the following
Whitehead products.

[in, in]

[[jn, in], jn]

has infinite order if n is odd, is trivial if n = 0, 2, 6
and has order 2 otherwise.
has order 3 if n is odd > 1 and is trivial otherwise.

All iterated brackets [in'
- - - ' in]c with more than 3 factors are trivial.
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See [23] and the paper of Adams: Ann. Math. 72 (1960) 20-104,

and see the paper of Liulevicius: Proc. N. A. S. 46 (1960) 978-81.
In the group [EX, Y] the commutator

(a, (3)=-a-0+a+(3

can be expressed by a Whitehead product

(a, 0) = [a, a] ° (Z20-

(1. 3) Proposition. Let X be a finite dimensional space and
0, (3, y E [EX, ESn]. The commutators satisfy the formulas (j = j n).

(a, a) _ [j, J](a u Q) +

[[], 7], J](a u y2(3 - (y2a) u Q),

((a, 9), y) _ [[J, J], J](a a (3 U y)

and all iterated commutators of length > 4 vanish.

By (1. 2) proposition (1. 3) is a consequence of the following for-
mulas for Whitehead products which are special cases of the distributivity
laws exhibited in chapter IL

(1. 4) Proposition. Let A and B be finite dimensional. For
a E [EA, ESn] and (3 E [EB, ESn] we have the formula in [EA ^ B, ESn]
(with j = jn

[a, a] _ [J, j] ° (a # 9)
+ ((_1)n-1[j, [J,J]]) ° ((y2a) # (3)

+ [[J, J], J] ° (a # -Y
2

)3).

We are allowed to replace # by # in this formula, see (3. 1).

Proof. Because of (1. 1) this follows as a special case of II (3. 3),
where we consider [a, (3] = [ja, j(3]. //

(1. 5) Corollary. Let Ai be finite dimensional, i = 1, 2, ... . For
ai E [EAi, ESn] there is the formula (j = jn):
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[[al, a2], a3] _ [[J, A], i] o (al # a2 # a3)

and all iterated Whitehead products of more than three factors ai
vanish.

Proof. For [al, a2] we use (1. 4). The linearity of the
Whitehead product 11 (3. 3) and (1. 1) above together yield the result. //

(1. 6) Proposition. Let X and Y be Co-H-spaces and let A and B
be finite dimensional. For

01 t
7-A EX -;I. ESn

710.EB
CO.

Fly E S
n

we have the formula in [sA , B, 2Sn]

[ a, 713] = 71 ] ° (a # j') + (-[k, [., n]]) o ((Tx o yea) # G)

+ [[S, 77], 71] ° (a # Y20)

where TX : EX - X - EX ^ X interchanges the two factors
X, TX(t, x, y) = (t, y, x).

If = 77 = jn, this is exactly the proposition of (1. 4).

Proof. By (1. 5) this is a special case of II (3. 3). //

Moreover we obtain now as a special case of II (2. 8)

(1. 7) Proposition. Let A be finite dimensional and let X be a
Co-H-space. For a E [LA, EX] and x, y E [EX, ,,,n, we have

(x+y)o a=xa+ya+[x, Y]o y2(a)+c3(x, Y) 0 y3(a)

where

c3(x, Y) = [[x, Y], x]TX
3

+ [[x, Y], Y](TX 2
+ T213
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Here -X^X

is the shuffle, mapping t ^ xl ^ x2 ^ x3 to t - xi \ xJ. - xk for
t e S'. Since T is just a sign if X is a sphere we obtain

III

(1. 8) Corollary. Let A be finite dimensional and let a E [TA, ESn],
n> 1. For x, y E Tn+1(ESm) we have

(x+y) o a = xa + ya + [x" Y] ° y2(a) + c3(x, Y) - y3(a)

where

c3(x, Y) = (-1)n[[x, Y], x] + ((-1)n + 1)[[x, Y], Y]

If A is a Co-H-space, the term involving y3(a) is trivial.

(1. 9) Corollary. Let A be finite dimensional, a c [EA, ESn] and
let j = jn be the identity of F7Sn. Then for k E 71

(kj)a = k a + (k(2-1) [j, j])y2(a)

k - 1) [[j, j], j])y3(a)2

If A is a Co-H-space, the term involving y3(a) is trivial.

Proof of (1. 8), (1. 9). If A is a Co-H-space the term involving
y3 (a) vanishes as we can see by (4. 5). Moreover (1. 9) follows by in-
duction from (1. 8), take x = j and y = kj. //

For A a sphere, (1. 9) was originally proved by P. J. Hilton
in [23] in terms of the Hilton-Hopf invariant. That the correction term
involving y3(a) in (1. 8) vanishes when A is a sphere was first obtained
by I. M. James and P. J. Hilton as remarked in the footnote on page 168
of [23].

§ 2. Spherical Hopf-invariants

We define functions

(2. 1) an : [EX, ESr]. [EX, ESnr]
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r

I'Yn-1(0)

y(a) if nr is evennU
a if nr is odd.

where yn is the James-Hopf invariant with respect to the lexicographical
ordering of P(N) from the left. Thus for the definition of an only
James-Hopf invariants of even degree nr are involved.

We show that all James-Hopf invariants can be described in
terms of the functions ar

n
Let Ar be the set of functionsn

a [EX, ESr] -+ [EX, ESnr]

given by

(2. 2) a(o) = r
n (o) + (s[j, j]) ° arna

(t [[j, j], j]) ° A3r na

where s, t E Zand j = jnr. Let rn be the set of the James-Hopf
invariants

(2. 3) yn : [EX, ESr] -+ [Ex, ESnr]

where < varies over all admissible orderings of P(N).

(2. 4) Theorem. If X is finite dimensional we have rn C An.

[j, j]
Clearly, if nr is even, An contains exactly two elements since

is an element of order < 2 by (1. 1).

Remark. Composition with the suspension [EX, ESnr] -
[E2X, E2Snr] yields a set EAn with exactly one element Eari
En-lAn is the function considered by Boardman-Steer [13].

For several of the following proofs and for the proof of (2. 4)
we need a crucial lemma.

(2. 5) Lemma. Let M be a finite set and let G = FG(M)/ be a
group generated by M such that all iterated commutators of length > 4
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are trivial. Let < and --- J be two orderings on M, then in G we have
the equation

< -I
H

mEM
m = ( H

mEM
m) (TI [m, m'])

P
(H [[m, m'],
Q

m"]).

P is the set of all pairs (m, m') with (m < m' and m' -+ m) and Q
is the set of all triples (m, m', m") with (m < m' and m' -i m)
such that (m' < m" and m" --i m) or (m -i m"). The products over
P and Q can be taken in arbitrary order.

Because of (1. 3) this lemma is valid for any group [EA, ESn]
where A is finite dimensional. Furthermore we will make use of the
following properties of the reduced product. Let

(2. 6) n = 7rN : (Sn)N -' J(Sn)

be the quotient map with

n(xi, ... , X)=X1 ...
XN

and let pi (sn)N - ESn be the projection onto the
the product (Sn)N = Sn x ... x Sn. For any subset
{ 1, ... , N ) we then have the projection

i-th coordinate of
a=la i<...<arI c

(2. 7) pa = Pa t! ... U Pa :
E(Sn)N - ESnr

i r
The adjoint gr : EJ(Sn) ESnr of the mapping gr in II (2. 3) has the
property

(2. 8) Lemma. g (En) _ p where we sum in the order < over
ac N a

all subsets a of N = { 1, ... , N I with r elements.

The sum is taken in the group [E(Sn)N, ESn]. The elements pa
and pb have trivial commutator if a and b are not disjoint, the com-
mutator is by (1. 3):

(2.9) (P a' Pb) [j, j](pa u Pb)

where pa u Pb
(Ea b)npaub . Here sa b is the shuffle sign of the partition
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(a, b) of a u b; compare II (1. 13).

Moreover we use

(2. 10) Lemma. Let a, e [EJ(Sn), Z] and for all N let

(ESN)*a = (sVN)*R

Then a = 3.

Proof of (2. 4). If nr is odd we show in (4. 4) that yn e An.
Therefore yn e An for all n.

We now show that for two admissible orderings <, - on P(IN)
we have s, t e Z with

(1) - yn(a) + yn(a) _ (s[j, j]) ° y2n(a)

+ (t[[j, i], j]) ° y3n(a).

This implies the proposition rn c An We consider the diagram

) n gn - ESnrEX EJ(S"
g

(2) "NI G\n-, ," c

z (Sr)N
ESnr

n-1

where N > dim X. By definition (0. 11) we have

(3) Yn(a) + yn(a) _ ( gn + gn) o Ea

In the diagram

(4) G= i
n

o gn

n>1

is a homotopy equivalence. Here gn = yn g) : ZJ(Sr) -. ZSnr is the
James-Hopf invariant of the adjoint g : ZJ(Sr) - ZSr of g in II (2. 1).
Moreover in is the inclusion into the wedge. Since G is a homotopy
equivalence there exists a factorisation c = (c n, n > 1) with

(5) co G.
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We therefore know by (4) and (3)

(6) Yn(a) + yn(a) _ cn a yn(a)
n>1

M

For the computation of en we use (2. 10). By (2. 8) and (2. 5) we know

(7)

< -1 <
gn+gn) ° E7rN=- Pa+ Z pa +

acN acN

+ Z (Pa, Pa,) + E ((Pa , Pa,), Pa )
P Q

The sums over P and Q can be taken in arbitrary order. We choose
such an ordering of the sums so that they factor over

lex
(8) G o EnN = Z i#apa 'a

This is possible since < and -i are admissible orderings. For example
we have by (2. 9)

lex

P
(PaI Pay)

bcN c2n o Pb

#b=2n

c2n = s[j, j] with

s (£a b)n

The sum is taken over
and a< b and b- a.

all partitions (a, b) of '2-n with #a = #b = n

Because of (7) only

proves (2). //

c2n and can are non trivial in (6) and this

§ 3. Deviation from commutativity of spherical cup products

(3. 1) Theorem. Let X and Y be finite dimensional. For
a E [EX, ESn] and e [EY, ESm] we have

a # R = a + ((_1)nm+m [j, j})(y2(01) # y2(/3))

where j = jn+m' If X = Y we get

a U /3 =
((-1)nmj)($

U a) +
((-1)nm+m [j, j])(y2(a) U y2(Q))
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Proof. we choose N with dim X < N and dim Y < N. Let

M= tijll<_i, j:N1.

We define two orderings on M

ij< rs; i< r or i=r and j< s
ij- rs<=*j< s or j=s and i< r

For the adjoint
n. n.

fi = g : EJ(S 1) - ES 1

(n1 = n, n2 = m) of

f1(E&),

f2(E-01,

For the differences

g in II (2. 1) we have

F'=-(a#/3)+(a#0),
F = -(f1 # f2) + (f1 # f2

we thus obtain the homotopy commutative diagram

r, k

Tr is defined in the obvious way as in (2. 6) and G is a homotopy equiva-
lence given by
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G= jr k° (gr#gk)
r, k '

with gr = r(g) as in the proof of (1. 4). We want to compute the
factorization Fr k, r, k> 1.

From the definition of # and # we obtain the formula (compare
(2. 8) with r = 1 and gi = g):

F7r pi # qj) + C Pi # qj)
ij ij

with the orderings on M as defined above and where

and
pi : E(Sn)N y ESn

qi : E(Sm)N ESm

are the projections onto the i-th coordinate. From (2. 5) we get

Fir = Z [ij, i'j'] + Z ffij, 1'j'], i"j"JP Q J

where ij stands for pi # qj. Since the indices ij, i'j', i"j" have to be
pairwise disjoint we have

P= {(ij, i'j')Ii< i' and j> j')
i'j', i"j") i < i' and j > j' such that

Q

(ij'

(j < j") or (j > j" and V< i")

We order P lexicographically so that the sum I factors over
g2 # g2. Thus we see that P

nm+m2
F22 = (-1) [in+m' jn+ml.

2

We have the sign (-1)m since j > j'. When we have shown that the

sum is trivial, (3. 1) is proved by use of (2. 10). Look at
Q
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QC C' = i (ij, i'j', iI, j") c Q I C = { i, i', V I, C' = { j, j', j" J, J,

s

for given sets c, c' C { 1, ... , N) with #c = 41c' = 3. QC C, has 5

elements, and the corresponding summands cancel. For example:
with c = { 1, 2, 3) and c'= { 1, 2, 3) we get

Qc' C'
n even

m odd

n odd

m even

12, 21, 33 -1 +1

13, 21, 32 1 +1

13, 22, 31 -1 +1

12, 31, 23 -1 -1

22, 31, 13 -1 +1

Since [[J, ii, ii is at most of order 3' Qc, c' vanishes.

§ 4. Cup products of spherical Hopf invariants

//

Let IN = 11, 2, ... } be the set of natural numbers. A word
... ar, r - 1, of pairwise disjoint non empty subsets ai c INA = al

is a partition of A = a1 u ... u ar. For a subset a cIN we have
a= {ai < ... < ak) where k = #a is the number of elements of a.
Each partition A = ai ... ar with A=n= 11, ..., n) determines
the shuffle permutation 0(A) ES

n
with

0(A) (ki + ... + ki-1 + j) _ (a)
.

for ki = #ai (i = 1, ... , r) and 1 s j < ki The shuffle sign e(A) is

the sign of this permutation 0(A).
Let Par be the set of all partitions A in IN.
Lemma (2. 5) gives rise to the following definition:

(4. 1) Definition. Let M be a subset of Par such that for all A E M
we have #A = n, and let <, - be two orderings on M. We associate
with (M, <, -i ) and k EN three integers Nk, Pk and Qk:
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Nk(M) = I E(A)k
AEM
A=n

Pk(M, <, -4) = e(AB)k
(A, B) EP

where P is the set of all pairs (A, B) with A, B E M, A n B
A u B = n and A < B, B -+ A. Furthermore let

Qk(M, <, -i) _ Z E(ABC)k
(A, B, C) EQ

III

where Q is the set of all triples (A, B, C) with A, B, C E M,
{A, B, C ) pairwise disjoint and A u B u C = 3n subject to the con-
dition (A < B and B - A) and ((B < C and C -i A) or (A -i C)).
For the definition of Pk and Qk we need to know the ordering A < B
or A -iB only if AnB=¢.

(4. 2) Proposition. Let X be finite dimensional and let a E [EX, ESk].
In [EX, ES(n+m)k] we have the equation (n, m 1):

yn(a) u ym(a) = (Nkj) Yn+m(a) +

(Pk[j, j]) Y2(n+m)(a) +

(Qk[[j, j], i]) Y3(n+m) (a)

N k, Pk, and Qk are given by the set

Mn m = { ab E Par I #a = n, #b=m)

with the orderings

ab < a'b' = Min(a) < Min(al)
alb' -i ab 4 Min(a u b) < Min(a' u b')

For the number

aub=n+m
#a=n
#b=m
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defined in (4. 1) we know for n, m, k > 1

(4. 3) Nn, m =
([([n2] /2])

k even
nmk odd
otherwise.

where [n/2] = n' if n = 2n' or n = 2n' + 1.

Proof of (4. 2). Let 01 : X -+ J(Sk) be the adjoint of a. Since

yn(a) = gn o (E a)

we get

yn(a) u ym(a) _ (gn 11 gm) o (E a) .

We want to compute the difference of the mappings

gnugm
EX EJ(Sk) ES(n+m)k

Ear
(N j)gn+m

We choose N with dim X < N and we set

M= {abEMn mIaubcN}

We introduce two orderings < and -i on M, namely

ab < a'b' ; a< a' or a = a' and b< b'
lex lex

ab-i a'b'<- a u b < a' ub' or
lex

aub = a' u b' and ab < a'b'

where we use the lexicographical ordering from the left < . From (2. 8)

and (0. 5) we know lex

fi=(gnugm)(EffN) paupb
ab EM

On the other hand we have
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f2 = (Nk(Mn m) J)gn+m(z7TN) pa L' pb
' abEM

where we use pa a Pb =
kab j) paub' see (2. 9).

We now can apply lemma (2. 5), and using (2. 10) obtain propo-

sition (4. 2). //

(4. 4) Lemma. The number Pn Tn = Pk(Mn m' < , -+) in (4. 2) is

given by the formula

Pk = (-1)nmk+mkNk Nk
Nkn, m n-1, n m, m-1 2n, 2m

Proof. Pk is the sum of all elementsn, m

c(abcd)kE {1, -11

with abcd=2n+2m, #a=#c=n, #b=#d=m, such that a1< c1
and Min(c a d) < Min(d a b). This implies d1 = 1. Therefore

P = Z E(a, b, c, 1, d')k1nn

a <c
I 1

with 1 u d' = d. Since

E: (a, b, c, 1, d') = (-1)nmE(a, c) E(a a c, b, 1, d')

we get

Pk = (-1)nmk , E(a, b, 1, d')k ,
E E(a,

c) k
n, m ubld' atb=u

u1=a
1
<c

1

_ (-1)nmk I e(a, b, 1, d') k Nnk-l,n
nmk 1 mk k k

( ) (-) n-1, nNm, m-1 2n, 2m-1'

We are interested in the following special case of (4. 2), see 2.

(4. 5) Corollary. Let a E [EX, ESk] where k is odd, then for n > 1

a) u o + (2n-1)
[J J] Y2(2n+1)(a)Y2n+1(a) = y 2n(n
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Proof. We consider y2n(a) u yi(a) in (4. 2), then Nk = 1 by
(4. 3) and Pk = - z (nn) by (4. 4). Thus the proposition follows from

(1) Qk = Qk(M2n, 1' <, - ) = 0 mod 3.

Qk is the sum of all elements

c(ab cd fg) e { 1, -1 }

with abcdfg=6n+3, #a=#c=#f=2n and #b=#d=#g=1
such that

(2) ai < ci and Min(c a d) < Min(a u b)

and

(3) c1 < f1 and Min(f a g) < Min(a u b)

(4) 1 or Min(a u b) < Min(f u g) .

(?) and (4) imply d = 1 and ai = 2 or b = 2. On the other hand (2)
and (3) imply (d, g) _ (1, 2) or (d, g) = (2, 1).

We now fix disjoint subsets x, y, z C 6n + 3 with

#x = #y = #z = 2n and xi < y1 < zi. The subsum of Qk with all indices
a, b, c E {x, y, z ; contains exactly the following summands a where
T = E(X, y, z).

a b c d f g

x 2 y 1
(5) x 2 z 1

y z z 1

x b y 1

(6) x g y 1

x b z 1

x g z 1

(7)

z g

y g

x g

z g

z b

y g

y b

x b y 1 z 2

x b y 2 z 1

S

-T

-T

-T

T

-T

T

-T

T

-T
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(5) and (7) are only summands in case 1, 2 ¢ x y z and (6) describes
summands only if xl = 2, we may assume b < g in (6).

Since all these partial sums are congruent 0 mod 3, we have
proved (1). //

By (4. 5) Hopf invariants of even degree determine all Hopf
invariants. Therefore it is not necessary to compute Qk

in (4. 2),

since for even degree (n + m)k the triple product vanishes, see (1. 1).
For computations with formula (4. 2) it is enough to know (4. 4).

We still consider the following special case of (4. 2):

(4. 6) Corollary. Let X be finite dimensional and a E [EX, E5k] then

aua=
(0 if k is odd

!l (2j) y2 (a) if k is even.

Proof. Consider yl(a) u yl(a) in (4. 2). If k is odd we know
N = 0. ThusI'l

a U o = Pk I [j, j] Y4(a)

+ Qk(Mi, 1)[[j, j], j] Y6(a)

From the definition of Pk and Qk we get as in the proof of (4. 4)

Pk, = e(2 3 4 1) + c(2 4 3 1) + e(3 2 4 1)

=+1,

and we et Qkget 1) = 0. Therefore the proposition follows from (6. 2).
,

If k is even we have by (4. 4) and (4. 2)

a u a = (2j) y2(a) + 3[j, j] Y4(a)

Again the proposition follows from (6. 2). //

§ 5. Hopf invariants of a Hopf invariant, of a sum and of a cup product

With (4. 3) we define the number
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n-1
(5. 1) Mn, m = i11 m-1, im

1

Mn m = (n . m)! /((m! )nn! )

(5. 2) Theorem. Let X be finite dimensional and a e [EX, ESk]. In

[EX, ESnmk] we have the equation (n, m > 1)

ynYm(a) _ (Mn, mJ)ynm(a) .

Proof. Along the same lines as in the proof of (4. 2) we obtain
the formula

YnYm(a) = (N
kJ)Ynm(a)

+ (Pk[l, J])Y2nm(a)

+ (Qk[[J, A J])Y3nm(a)

where N1 , Pk, Qk are given by the set

Mnn1 = JA = a l... an E Par
#al=... =#an=m
Mina l < ... < Min an }

with the orderings

A < A' Min(a1) < Min(a")

A -+ A' Min(A) < Min(A')

Since Min(a) = Min(A) we see A < A' A -+ A'. Therefore there are
no pairs (A, A') with A < A' and A' -4 A and this implies Pk = Qk = 0.

Moreover we can prove that in fact the number Nk(Mm) defined
in (4. 1) is equal to Mn m defined in (5. 1). //

In II § 2 we have already seen:

(5. 3) Proposition. Let a, (3 e [EX, ESk] then
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Yn(a + /3) = Yna + (! vn-i(a) u Yi(Q) + Yn(Q)

i=1

III

(5. 4) Proposition. Let a E [EX, ESk], p e [EX, ESr], k, r, n > 1,
then

kr. () n
Yn(a j)((Yna) u Q )

where Gn = 13 u ... u G is the n-fold cup product.

(5. 2) and (5. 3) are special properties of the lexicographical
ordering from the left.

§ 6. Hopf invariants of a composition element

In this section we exhibit an expansion formula for the Hopf in-

variant Yn(j3 o a) of a composition element 0 o a, where ,B maps into
a sphere. This yields for the suspended Hopf invariants xn = En-1vn'
the expansion of J. M. Boardman and B. Steer, see 3.16 of [13]. For
Y2(Q o a) we improve a formula of B. Steer in [39].

(6. 1) Proposition. Let X and A be connected finite dimensional
spaces and let A be a Co-H-space. For the composition

TX a EA ESk

we obtain the Hopf invariant in [EX, ES2k] by

Y2a) _ (Y2R)a + (Q # 0)(v2a) +

[j, ]° {(0 #(3#(Y2A))(Y3 a)+(R#9W0#(3)(Y4a))

(6. 2) Corollary. Let X be connected and finite dimensional. For
a E [EX, ESk] with k > 1 we have in [EX, ES2k]

[j, j]Y4(a) = 0.

Proof. Take A = Sk and 3 = j in (6. 1). //
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(6. 3) Corollary. Let X be a Co-H-space. Then the composition

EX ESn -+ ESk

has the Hopf invariant

2(Ra) _ 0, 20)a + (R # )3)Y2a

Proof of (6. 3). For R : ESn - ESk we have by (6. 2), (1. 4)

[j2k' j2k] (R#R#RIt R)Y4a=[R#R, 0 #0]Y4a

= (R # R)[j2n' j2n]y4a = 0.

Moreover from (4. 5) it follows that the term in (6. 1) involving y
3
(a) is

trivial if n is odd. If n is even, y3a has order at most 3, see chapter
W. Since [j, j] has order < 2 the term involving y3a also vanishes
if n is even. //

Remark. In [39] B. Steer calculated the Hopf invariant of a com-
position element o a E k+1

R r+l(S ). He obtains in 4. 7 of [39] a formula

similar to (6. 3) but with a correction term A. (6. 3) settles in the affir-
mative his question whether this correction term is trivial. The quite
intricate methods of [39] are different from ours and yield the correction
term 0 in a different form.

We obtain (6. 1) as a special case of the following more general
result.

(6. 4) Proposition. Let X and A be finite dimensional connected
spaces. For the James-Hopf invariant of the composition

EX EA
Q

ESk

we obtain

Yn(R ° a) = I rn(R) ° Yr(a)) +
r=1

where
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n r

I'n(O_ I E ...
it=1 it-1=1

n-i-...-1r 3

yi (Q) # ... # yi (Q)
i =1 1 r

2

III

with it = n - it - ... - i2 . A vanishes under suspension. If nk is
even, is at most an element of order 2 which we define as follows.
The case nk odd is settled by (4. 5).

In (0. 8) we define the lexicographical ordering < lex of subsets

of IN. For i, i' E ZN = Z x ... x Z we have correspondingly the lexi-
cographical ordering

i< lex
i,4 For j with

(a < jsN)
let i. < V .

J J

i = isa
and i. # P

Now we choose N with N> dim X. For the subset of ZN
N

Mn (i1, i2, ... , iN) j is > 0, is = n )
a=1

we define two orderings

i< i'4- (iN, ... , i2 4 lex (1N' ..., i2)

i -4 i1 `i+ d lex i+ and

where

if i=i + then i< i'

i+= (a E {1, ..., N) I is#0).

As in (3. 1) we associate with (Mn, <, -,) the set

PC M X M, with

(i, i') E P i < i' and i'

For i E M we set

yi = yi (Q) # ... # yi
N

(a)
s
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where we omit the factors yi ((3) with is = 0. With this notation we

obtain 0
a

in the proposition by

(6. 5) -4 = ° y (a) for nk evenE P

where

m m
m>_ 1

P m
m I

(a, b) eP
a+ub+=m

1Y' Y ]° T(a , b )a b + +

For subsets al of m = U, 2, ... , m) with al u ... u ak = m let
T(al, ... , ak) be the suspension of

T :A^ m y A^#a1 ^ ... A^ #ak

mapping x1 " ... ^ xm to x(a1) ^ ... /' x(ak) where
x(a) = xa ... ^ xa for a = {a1 < ... < ar I. If A is a Co-H-

1 r
space T is null homotopic if a1, ..., ak are not pairwise disjoint.

Proof of (6. 1). The result in (6. 4) gives us the formula

Y2(R ° a) = (Y2 a + (Q # R) ° Y2a + 0 where

O=[$#Qr Y20 (Y3 a)+[(3#0, 9#0]-T2314 ° (Y4 a)

from which we derive the formula in (6. 1). In fact M2 contains only two
types of elements, namely

0 ... 010 ... 010 ... 0

0 ... 020 ... 0
=M

2

Now we see P2 is trivial. P3 has only one summand with the index
pair (a, b) with a = 110 and b = 002. Moreover, P4 has only one
summand with the index pair (a, b) with a = 0110 and b = 1001. //

Proof of (6. 4). For the adjoints a, (3 (see (0. 9)) we have

(1) i3 -.a =
RW

° a
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where p = JA - JSk is the homomorphic extension of p. We now con-
sider the diagram

ERN

ZA N (JS )N

E7rN (2)

EJA EJSk

G (3) gn = Yn(9)

.. pA^i
k

i?1 n

NA = A x ... x A is the N-fold product and µ is the multiplication.
7T N is defined as in (2. 6). Thus (2) commutes.

The homotopy equivalence G is given by

(4) G= Z i g
A n

n>-1

where in is the inclusion of EA^n. We want to compute the difference
of the mappings.

fi =
gn(E(3"O)

(5)

f2=r*((3)o G

in (3). Clearly because of (1) and (4) we know for A in the proposition

(6) 0 = (Ea) (-f
2

+ fi).

As in II (2.15) we see

n
n-iN n-iN ...-13

(7) gn(Eµ) = E z ... E gi qi u ... li gi qN
iN 0 iN-1=0 i2=0 1 N

where i1 = n - iN - ... - i2 and where qi : XN - X is the projection
onto the i-th coordinate. We omit the factor gi qa if is = 0.

a
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For i = (i1, ... , i
N

) E M we set

r(i) = Yi (R)qI U ... U Yi (0) qN .
N

Again in r(i) we omit the factor yi qa if is = 0.
a

From (7) and (2) we have

(8) fl (EnN) _ I'(i)
i EM

From the definition of G and r 1((3) we get

(9) f2(E7TN) _ r(i)
iEM

The difference of (8) and (9) can be obtained from (2. 5). Thus the
proposition is proved. //

As an example we know for the Whitehead product

Dk' ik] E

'2k+1(Sk+1)

`'2([lk' lk]) = 2i if k is odd

yn([ik' k]) = 0 otherwise n > 1.

Since E[) k' ik] = 0 we get

(6. 6) Corollary. For a : EX - ES2k we have

(2nj)(yna) if k is odd and m = 2n
Ym([jk' k]a) _

0 otherwise.

90



N. HIGHER ORDER HOPF INVARIANTS ON SPHERES

§ 1. Examples of higher order Hopf invariants on spheres

Again we consider the generalized homotopy groups of spheres
[F,X, sSk] where FX is the suspension of a finite dimensional connected
polyhedron X. On such groups the James Hopf invariants

(1. 1) yn : [EX, F'Sk]
-+ [EX, ESnk]

are defined. In general these are not homomorphisms of groups. They

are non trivial as is easily seen by

(1. 2) Proposition. If x e Hk(X, Q) has non trivial cup product power
xn there is a map f : EX - ESk with rational degree x such that yn(f)
has rational degree xn/n!

However, if X is a Co-H-space, all cup products vanish. In

this case most of the invariants Y. vanish too. We prove in §2:

(1. 3) Theorem. Let X be a finite dimensional Co-H-space. Then
for n >_ 2 all possible definitions of James-Hopf invariants yield the
same function (1. 1) which is a homomorphism of abelian groups. More-
over, if k is even we have

pyn(a) = 0 if n = pv, v >_ 1, p a prime,

yn(a) = 0 for other n >_ 2.

If k is odd we have

pyn(a) = 0 if n = 2pv, v >_ 1, p a prime,

yn(a) = 0 for other n >_ 3.

This improves results of M. Barratt [6] and of J. Boardman,
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B. Steer, see 3. 18 in [13]. The theorem shows that the only Hopf in-
variant for a Co-H-space X, which might be of infinite order, is the
classical one:

(1. 4) y2 [EX, ESk] ES2k], k odd.

In fact, as we know by the result of Adams for X = S2k the image of

2 is [ES2k, 71S2k] = Z if k = 1, 3, 7 and is 2Z for other odd k.
We now exhibit examples of Co-H-spaces X, namely spheres and

Moore spaces, with non trivial higher order invariants (1. 1) n > 3. To

my knowledge these are the first examples to be described in the litera-
ture. The examples show that theorem (1. 3) to some extent is best
possible.

Let

(1. 5) pk+1 (p) = Sk up
ek+1

be the Moore space for Z in dimension k. Clearly for k - 2
pk+l k(p) = EP (p) is a Co-H-space. We have the pinch map

Pk+1(p) y Sk+1

For a prime p we consider an element ap E ii2p(S3) which generates the
p-primary component. Since ap has order p we have an extension

ap E [EP2p(p), ES 2]

of ap. We prove

(1. 6) Theorem. yP (a p) E [EP2p(p), ES2p] is an element of order p.
In fact yp(ap) generates the same sub-group as the pinch map Ep
(p an odd prime).

It is well known that ap is a Co-H-map. Clearly ap is no
C o- H- map.

Proof. The reduced product J(S2) is a CW-complex with the
n-fold reduced product Jn(S2) as a 2n-skeleton. Let
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2
]p : S2p-1 - Jp-1(S2)

be the attaching map of the 2p cell e2p = JpS2 - Jp-152. In [2] we

prove that [i2]p is divisible by p. So let & be given with

(*) pa=[i2]p.

Then the composition, with r = identity on JS2,

Ea r
S2p F.Jp-1(SZ) - EJSZ _ ES2

N

generates the p-primary component of n2p(S3), see [8]. Because of (*)
a extends to

o : P2p(p) '' J(S2)

and c is of degree 1 on the 2p cell. Therefore the composition g pa is

P?p(p) S2p c_ J(S2p) . //

In [1] D. W. Anderson proves the following formula which relates
Hopf invariants with the e-invariant of complex K-theory. Let k be
odd and 2t + k + 1 > ?r t + 1. Then for a E r 2t+1

2t+k+1(S ) the

e-invariant of the r-th Hopf invariant satisfies the formula

(1. 7) eyr(a) = (-1)r+lrt-1(r(k+l)/2 - l)e,,(a) .

Theorem (1. 3) shows that this formula is only relevant if r = pv is a
prime power. Using results of B. Gray [19] we derive from (1. 7),

(1. 8) Proposition. Let a E IT2m(S2t+1). Then eeyr(a) # 0, r > 1,
implies r = 2v or r = p is an odd prime.

(1. 9) Theorem. Let p be an odd prime and assume k > t > 1 are
given with pt-1 Ik. Then there exists an element

a E IT2k(p-1)+2t (S
2t+1

)

of order pt with e-invariant
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eC(a) t mod Z
p

such that the p-th Hopf invariant

Yp(a) e
'2k(p-1)+2t(S2pt+1)

is an element of order p with e-invariant

eCyp(a)=-p mod Z.

Proof. The element a is constructed by B. Gray in [19]. He

proves that eC(a) = -1/pt mod Z. Using (1. 7) we see that

e.-y(a) = -1/p mod Z. By a result of F. R. Cohen, J. C. Moore andp

J. A. Neisendorfer the p-component of n*(S2t+1) has exponent pt.
Therefore a is in fact an element of order pt From Theorem (1. 3)
we know that yp(a) is an element of order p. //

In other words, (1. 9) shows that elements a, which are in the
image of the J-homomorphism, have non trivial higher order Hopf
invariants on their sphere of origin.

Remark. The examples above yield further examples by con-
sidering [it, jt] ° a where [it, it] is the Whitehead square of a genera-

tor jt e at+i(St+l), t odd. In III (6. 6) we prove for a e [ESn, S2t+1]
the formula

Y2pQjt jt] ° a) _ (2pj2pt) e Yp(a) .

§ 2. Proof of theorem (1. 3)

We first consider the James-Hopf invariants yn which are defined
with respect to the lexicographical ordering from the left.

Since X is a Co-H-space we know that all geometric cup products
are trivial. This fact and formula III (4. 2) yield equations for higher
order Hopf invariants, from which we will derive the proposition.

We know that for binomial coefficients the greatest common
divisor

94



Am= gcd {(m)I0< i< m},

is given by

1- p if m=pv, p a prime, v
(1) Am

1 otherwise.

For the numbers

(2) N=Nk = Pkm' n, m

in III (4. 2) we get from III (4. 2) and III (4. 5)

(3) (Nj)yn+m(a) = -P[j, j]y2(n+m)(a)

Here we know by III (4. 5) that the term
is trivial if (n + m)k is odd.

Using III (1. 9) we deduce from (3)

(4) N yn+m(a) = (L[j, j])y2(n+m)(a)

with

L=-P_ N(N-1)

j]y3(n+m)(a)

Let R = (n + m) and r + s = 2R. Then (4) implies

(5) Nr s n, myn(a) = 0.

If k is even we thus get from III (4. 3) and (1)

IV

in III (4. 2)

(6) A2R ARyR(a) = 0.

Thus 4VR(a) = 0 if R = 2v and pyR(a) = 0 if R = pv, p an odd prime,
and yR(a) = 0 otherwise.

Now let R = n + m = 2. Then we know by 111 (6. 2) [j, j]y4(a) = 0
and therefore by (4) with n = m = 1.

(7) 2y2(a)=O if l a l= k even
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Moreover we have by 111 (5. 2)

(8) Y2Y2n(a) = Nkn nY n+1(a)2 -1,2 2

where I a = k can be odd or even. Now

Nk =
n

n-1, 1,22 -

k even

k odd

is always an odd number. Therefore by (7)

(9) 2 y2n(a) = 0 for n> 1, jai odd or even.

Thus the proposition is proved for k even. Now let k be odd. Then

(5) and III (4. 3) yield for R - 3

(10) AR A[R/2] yR(a) = 0.

If R is even, R >_ 4, this implies p yR(a) = 0 if R = 2pv (v >_ 1 and
p an odd prime) and 4yR(a) if R = 2v, (v > 2) and yR(a) = 0 for other
even R. This and (9) proves the proposition for yR(a) with odd k and
even R. We still have to show that yR(a) = 0 if R and k are odd.

Assume now R and k are odd. From III (4. 5) we see

YR(a) _ ((R-1)/2) [], )]Y211(a)

Using (10) for 2R instead of R we have

(11) A2RARYR(a) = 0 for Rk odd.

From this equation we derive by (1) pyR(a) = 0 if R = pv, p an odd
prime and y (a) = 0 for other odd R. In case v

odd, we can assume a has odd order. We therefore know

(12) a=Ea'+ [J, ]]° a
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since k is odd. From III (5. 3) and III (6. 6) we get

(13) yR(a) = 'R ([j, j]a") = 0.

Now the proposition is proved for James Hopf invariants with respect to
the lexicographical ordering.

Proposition. Let X be a finite dimensional Co-H-space. Then
for n - 2 the set Ak in III (2. 4) contains exactly one function

n
yn : [EX, ESk] [EX, ESnk], that is, all possible definitions of James-
Hopf invariants coincide for n > 2.

Proof. If nk is even we have for a E Akn

(14) a(a) = yn(a) + s[j, j]y2n(a)

"'2n
(a) might be non trivial for n = 2m. Here we consider only m >_ 1

since n >_ 2. From III (6. 2) and (8) we can derive

(15) [j, j]y m(a) = 0, m >_ 2 and k even or odd.
2

Now let nk be odd. Then we have for A E Ak the formula
n

(16) A(a) = s[j, j]y2n(a) + t[[j, j], j]y3n(a)

Here [[j, j], j]y3n(a) is trivial by III (4. 5) and III (1. 1). Moreover

2n
(a) might be non trivial for n = pv, p odd. However, for R = pv

p and k odd we know

(17) 0 = yR(a) _ ((RR- 2
-1)/2) [j, j]'2R(a)

by III (4. 5). Since for R = pv, p an odd prime,

R2 0 mode(R-1)/2

we can derive from (17) y2R(a) = 0. This proves A(a) = 0 for
nk odd. //
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§ 3. Zassenhaus terms for an odd prime p

As an application of the results in chapters II and III we give in
this section proofs of the purely algebraic results on Zassenhaus terms
in I, 84.

Proof of 1(4. 8) for v = 1. Let w = x1... xkEFM({ x, -x I xEX) ).

For ap in (1. 6) we consider
k

xl ° a E [5'P2p(p), - ES2] = G
i=1 -p XEX

where x E X denotes as well the inclusion of ES2 for the index x. We
know by the general left distributivity law II (2. 8)

k k
xl° ap=( xl)° ap+cp(w)° Yp(ap).

i=1 i=1

Since (-1) o a = a ° (-1) by III (1. 9) and since G is an abelian group
we have for vp y'.p.ys E FM({*, -xIx EX) with irv = -rrw also

k s
xl 0 a = y ° a

i=1
p

i=1
p

Therefore

cp(w) ° Yp(ap) = cp(v) ° YP(ap) .

Since Yp(ap) : EP2p(p) - ES2p is essentially the pinch map it follows

cp(w) ° c p(v) mod p.

Proof of I (4. 9). Let Ji = Ji(S2) be the i-fold reduced product
of the 2-sphere. We consider the group

G = [E(S2 X Ji), E(S2 " S2 " S2)] .

Let x, y, z be the three inclusions of ES2 into E(S2 / S2 / S2).
Let p, q be the projections of E(S2 X J

i) onto EJi and ES2
respectively. Moreover let g : EJi ES2 be the retraction given by
the adjoint of g in II (2. 1). Instead of I (4. 11) we now consider the
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corn mutator

B = [z o e, x o 77 + y o r7]

IV

in the group G, where 11 = g o p and where e = q. We know that we
have a homotopy equivalence

R
E (S2 X Ji

) I/ S2J S2j+2 = W
j=1 j=1

Let I. be the inclusion of S23 and J. the inclusion of S2j+2 into W.

Then we set
i i

R = I. o yj(77) + J. o (e u yj(17))
j=

j=1

We now fix an odd prime p and we set i = pv, v > 1. Then R yields
the projection

v
r : G i [ZS2p +2, E(S2 , S2 , S2)] e) Z/pZ

with r(x) = (J*v) (R*)-1(x) 9) 1. We calculate r(B) in two different ways:
p

First we know by I (1. 14) that

B=[zo e, xo 71]+[zoe, yo 71]+[[zoe, xo 77], yo 71]

We expand [z o e, x o 17] and [z o e, y o r7] by II (3. 4), where we use
the equation in the proof of II (1. 12). We obtain

[z o e, x o 771 = Z [[z, xn] o (e u yn(77)) = U.
n>1

We moreover can expand by I (1. 15) and II (3. 4) the term [U, y
so that we get

[U, yo 71]_ Uno (euyn(77))
n>1

for certain Un. Un is obtained by the rules for the cup product and for
Hopf invariants yn in III. Since (p

v) for i=', ... , pv - 1 is

divisible by p we see that U v is divisible by p. Moreover, since
p

the Hopf invariants of e u yn(77) vanish, we see by II (2. 8)
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B = E ([[z, xn] + [[z, yn] + Un) ° (e u Yn(rl))
n>1

Therefore we obtain

r(B) = [[z, xpv] + [[z, Ypv] .

On the other hand we have by II (2. 8)

B = [z o e, (x + y) o q + I cn(x, Y) c Yn(71)]
n>2

If we expand this term by I (1. 15) and by II (3. 4) we see by considerations
as above

r(B) _ [[z, (x + Y)pv] + E [[z, c w(x, Y)pu]
u+w=v p
u>0
w> 1

This proves equation I (4. 14), since we have the embedding

Lz(x, Y, Z) ® Z/pZ 4 i*(f2E(S2 " S2 " S2)) ® Z/pZ

With the argument I (4.15) the proof of I (4. 9) is complete. //
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PART B: HOMOTOPY THEORY OVER A SUBRING R OF THE

RATIONALS Q WITH 1/2, 1 /3 e R

V. THE HOMOTOPY LIE ALGEBRA AND THE SPHERICAL

COHOMOTOPY ALGEBRA

In chapter III we gave a list of equations for homotopy operations
on homotopy groups [EX, ESn] of spheres. We simplify these equations
if we localize with respect to a subring R of the rationals Q containing
112, 1 /3 E R. In these localized groups [EX, ESn]R the terms which are
compositions with the Whitehead products [j, j] (n even) and with

[[j, j], j] vanish, j = jn E 77 n+1ESn).

This way we are led to introduce the spherical cohomotopy
functor, which associates with a connected space X an algebra with
divided powers M(X, R). This functor has properties dual to the
properties of the homotopy functor, which associates to a connected
loop space ilY the Lie algebra L(Y, R) = 7r,(cY) R.

§ 0. Notation

We recall some notations:
A group G is nilpotent if there exists an integer k > 1 such that

an iterated commutator of any k of its elements taken in any order is
zero. G. W. Whitehead proved that [X, 62Y] is a nilpotent group if X
is finite dimensional. For such a nilpotent group we have the Malcev
completion or rationalization [X, c Y]Q and more generally the localiza-
tion [X, 62Y]R with respect to any subring R c Q. We assume X and
S1Y to be connected and 1/2, 1 /3 E R.

(0. 1) Definition. Let R c Q be a subring of the rationals. We say a
nilpotent group G is an R-local group if G is uniquely divisible with
respect to R, that is the function x i- xn, x E G, is bijective for all
n * 0 with 1/n E R. A Q- local group is also called a rational group.
For each nilpotent group G the R-localization G - GR is given where
GR is an R-local group. It has the universal property: Any group homo-
morphism G -+ H into an R-local group factors in an unique way over
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G - GR. GQ is called the rationalization or Malcev completion of G.
Compare [25]. Similarly, for a nilpotent space X the R-localization
X - XR is defined [25].

(We remark that R-localization here is n-localization in [25]
with n the set of primes not invertible in R. )

The R-localization X - XR induces isomorphisms of R-local
groups

(0. 2) [EX, Y]R = [EX, YR] = [EXR, YR] .

Since we assume 2Y and X to be connected, the localizations YR and
EXR = (EX)R are defined. A particular case of (0. 2) is

(0. 3) 77 (c2Y) R = [ESn, YR] = [ESR, YR]

for n > 1.
If x is an element of a graded R- module, then I x i denotes

its degree.

(0. 4) Definition. Compare [15]. A Lie algebra L is a (positively
graded) R-module with R bilinear pairings

[ , ] : Ln x Lm - . 0 . Ln+m

which satisfy the relations of

(i) antisymmetry [x, y] x I I Y ! [y, x] for all x and
y

the Jacobi identity:

[x, [Y, z]] = [[x, Y], z] + (-DIRT IYI[Y, [x, z]]

for all x, y, and z in L.

We consider only connected Lie algebras, i. e. those with Lo = 0.
Let LieR be the category of connected Lie algebras.

(0. 5) Definition. Compare [41]. We say a graded module
A = IAn, n > 0 ) over R is a (connected graded commutative) algebra
over R if A0 = R and if an associative multiplication
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u :A ®RA - A
V

with unit 1 e R =!A 0 is given which is commutative, that is
x u y = (-1) X I IY y u Y. We say such an algebra has divided powers
y if functions

Y
:An-b Anr

r n>1, r>0,

are given satisfying the following set of axioms: x, y e A

(a) ydx = 1 and y,x = x
(b) yrx = 0 for r> 1 and I x I odd

(c) Yr(x+y) = yi(x) U yj(Y)

i+j=r
i, j>0

(d) Yn(xuy) = xn U (YnY) = (YnX) U yn

((e) Yn ymx =
(m! ) (n!

mn(n!)
Ym, n(X)

(f) Yn(X) u ym(x) _ nnm) Yn+m (x)

From (d) follows

(g) Yn(AY) = Anyn(Y) for A E R

and from (f) we obtain

(h) n ! yn(x) = xn

m! = 1 2 ... m, and (n) = m! /(n! (m - n)!) is the binomial coefficient.

Let Div algR be the category of algebras with divided powers.
Morphisms are the algebra homomorphisms f of degree 0 compatible
with y, that is f ° yr = Yr o f.

(0. 6) Remark. If A is uniquely divisible equation (h) determines y,
n

namely yn(x) = n xn. Clearly the function ni satisfies all the axioms.
So we see, the rational cohomology H*(X, Q) of a connected space X
is an algebra with divided powers over Q.

§ 1. The homotopy Lie algebra and the spherical cohomotopy algebra

Let Top0 and Top, be the homotopy category of connected and 1-con-
nected CW-spaces respectively, (clearly with base points). The homotopy Lie
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algebra is the functor

(1. 1) L(. , R) : Top, - LieR

which associates with a simply connected space Y the Lie algebra

L(Y, R) = it (SRY) 9) R .

The R-local spheres Sb, n > 1, are the universal objects for this
functor since we have

nn(52Y) 9) R = [SR, StYR]

The Lie bracket is the Samelson product. Equation II (1. 7) and 11 (1. 8)

show that the Samelson product satisfies the equations (0. 4) of a Lie
algebra.

Rational homotopy theory of Quillen [34] and Sullivan [40] shows

that the rational cohomology functor H*( . , Q) has properties which are
dual to the properties of the functor L(. , Q).

More generally we now exhibit for a subring R C Q (112, 1 /3 E R)
the functor M( . , R) which is dual to L( . , R). This extends the above

duality in rational homotopy theory, we have M(. , Q) = H*(. , Q). The

functor

(1.2) M(., R) : Topo -DivalgR

associates with a connected space X an algebra with divided powers
M(X, R), see (0. 5), which we call the spherical cohomotopy algebra
of X. The universal objects for M(. , R) are the spaces

(1. 3) S2R =
S2FSR n even > 0

n odd.

For R = Q, it is well known that

(1. 4) Stn = K(Q, n)

is the Eilenberg-Mac Lane space of Q in dimension n.
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If X is finite dimensional (see II (1. 11)) Mn(X, R) is defined

as a set by M°(X, R) = R and for n> 0 by

n n [EX, 'SR], n even > 0
(1. 5) M (X, R) = [X, nR] =

If X is not finite dimensional

[X, SR], n odd.

Mn(X, R) = lim Mn(XN, R)

is the inverse limit given by the inclusions X° c X1 c... of finite

dimensional skeletons of a CW-model of X, see (1. 4) in [11]. This

graded set M(X, R) = { Mn(X, R) ) n>0 has in a natural way the algebraic
structure of an algebra with divided powers which we define as follows.

For x E Mn(X, R) we set

(1. 6) x =
x if n is even

{Ex if n is odd

so that x E [EX, ESR] for all n. As we know, the suspension map

(n odd)

Mn(X, R)_[X, ESR]

is injective, since z E R. Therefore x is uniquely determined by x.
Let jn be the identity of ESR. For each x E R we have the

map ajn : ESR _ ESR of degree a. Furthermore we know
SnR SRm = SnR+m With these notations we define for x, y E M*(X, R),

A E R:

(i) ()x)- _ () jn) o R

(ii) (x + y)- = y + R + [j, j] (x 2 y) where j = jn for
Ixl = Iyl = n. Clearly [j, j] = 0 if n is even.

(iii) (xuW =XUy.

(1. 7) Theorem. For finite dimensional X, (i) and (ii) determine an
R-module structure on M*(X, R) and (iii) yields an algebra multiplica-
tion ti on M*(X, R). Moreover the James-Hopf invariants
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Y
: Mn(X, R) - Mrn(X, R)

(n even) are divided powers on this algebra. If X is not finite dimen-
sional M*(X, R) is the inverse limit of the algebras with divided powers
M*(XN, R), see (1. 5).

(1. 8) Remark. There are various possibilities to define the James
Hopf invariants. However, since i E R and since n is even all possible
orderings for the definition of yr yield the same function, see III § 2.

(1. 9) Remark. P. S. Selick has shown that SR for n odd and
1/2, 1/3 E R is an H-space which is homotopy associative and homotopy
abelian [15]. In fact such an H-multiplication p is given by defining

µ=p1 +p2 EMn(SRx SS, R)

where p1 and p2 are the projections SR
X

Sn -+ S. Clearly, p in-
duces the abelian group structure on Mn(X, R).

R

Proof of (1. 7). It is enough to prove (1. 7) for finite dimensional
X. We first show that Mn(X, R) is an R- module. If n is even, FSnn
is an H-space and the multiplication on TS nn induces the abelian group

structure on Mn(X, R). Thus Mn(X, R) is indeed an R-module in this
case. The case, n odd, is more complicated. First we have to show
that (x + y)~ in (ii) is desuspendable. For this it suffices to prove that
the James-Hopf invariant y2(x + y)Y vanishes, since it is a result of
James, see Ann. Math. 65 (1957) 74-106, that

92 2n
-H C_ J(SR) J(SR )

is a fiber sequence which admits a homotopy section if E R. Usingz

III (5. 3) and III (6. 6) we see

y2(x+y)-=yuSE +xuy=0

where we use the familiar fact y2([j, j]) = 2. Moreover (i) and (ii) are
compatible for n odd since by III (4. 6) we have x u x = 0.

It remains to prove that (ii) defines an abelian group structure.
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In fact by III (1. 3) and III (3. 1) (since 1/3 e R):

+X+[j, j] (x2 y)=x+Y+[j, j](y2x)

Furthermore we show that (ii) is associative.

((x+y)+z)-=z+(x+y)~+ [j, j](-z2(xUy)-u

=z+y++ [j, j]2(XU+XUZ+UZ).

On the other hand

(x+(Y+z))-i=(Y+z) +x+[j, )](iXU (y+z)-)
=z+y+ [j, j]Z(&UZ)+x+[j, ill(XUy+SU2).

V

Thus using III (1. 3) we have associativity, since 1 /3 E R.
That u is an algebra multiplication follows from (1. 15), (1. 17)

and (1. 22) in I and from (3. 1) in III. Property (c) and (d) in (1. 7) are
proved in (2. 14) and (2. 15) in IL (e) and (f) follow from (4. 2) and (5. 2)

in IIL //

The following corollary corresponds to IV (1. 3)

(1. 10) Corollary. If X is a Co-H-space the Hopf invariant
yr : Mn(X, R) - Mrm(X, R) is a homomorphism of R-modules, also

vp yr(x) = 0 if r = p is a prime power and yr(x) = 0 otherwise.

As we saw in IV for a prime p and Co-H-space X the Hopf
invariant yp on Mm(X, R) need not be trivial. For example for
a sphere SN

(1. 11) yp : M2t(SN, R) - M2tp(SN, R)

is non trivial if N=2k(p - 1) + 2t - 1 where pt-1 divides k, k> t > 1,
1 /p 9' R.

Proof of (1. 10). Since X is a Co-H-space the reduced diagonal
X - X ^ X is nullhomotopic. Therefore all cup products in M*(X, R)

are trivial. Now if A is an algebra with divided powers and if the cup
product in A is trivial the operation yr is a homomorphism of groups
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by (c) in (1. 7). Moreover,

pyr(x) = 0 if r = pv, v > 1, p a prime

yr(x) = 0 for all other r.

This follows from (f) in (1. 7) since the greatest common divisor of
(r) for 0 < n < r is equal to p if r = pv and is 1 otherwise. //n

§ 2. Homotopy groups of spheres and homotopy coefficients

It is well known that for the p-primary component (p odd) of
homotopy groups of even dimensional spheres we have a splitting

71

n+1(S2t)p = 71n(S2t-1)p 63 nn+1(S4t-1)p

Thus only homotopy groups of odd dimensional spheres are relevant.
We here describe the algebraic structure of primary homotopy opera-
tions on these groups.

The graded R-modules M*(X, R) and n*(nY) ® R have additional
structure in that homotopy groups of spheres operate on them. We call
the double graded R- module M = M** with m, n - 1R

MR' n =M m(Sn, R) _
['SR, ESR] m even

[ SR, SR m] m odd

the coefficients of the functors M*(. , R) and 7j*(62 . ) ® R. We have an
isomorphism

(2. 2) nn+1(rSR) i
Nm,n

Mm, n
R

m even

m odd

where i(a, 3) = Ea + [j, j] o [ if m is odd.
The module of coefficients M = M"* in (2. 1) has the following

algebraic structure:
We know by (2. 2)

(i) M** = { Mm n, m, n > 1) is a double graded R-module with
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Mm,n=

0 m> n
R m=n
finite m< n.

I group

(ii) We have a bilinear pairing (m, n, k > 1)

O : Mm, n

g)R
Mn, k _. Mm, k

defined by (C O 77)~ _ ? o , see (1. 6)

(iii) We have a bilinear pairing (m, n, m', n' > 1)

# : Mm, n Mm', n' -, Mm+m', n+n'
R

defined by (C # r?)- = ? it = t If , see H (1. 14).

(iv) We have homomorphisms of R-modules (m, r, n > 1)

yMm, n _. Mmr, n
r

which are the Hopf invariants.

(v) We have elements (n > 1)

en=1 ER=Mn,n

V

defined by (en)-
= jri

These operations ((D, #, yr, er) on M** satisfy the following relations
(a, b, . . . , i)

(2. 3) Definition. Let R be a subring of Q. We call any double graded
R-module M = M** with operations (0, It, yr, er) as in (i)... (v) above
a module of homotopy coefficients if
(a) 0 is associative and has units en,

em0C=C=COen for CEMm,n

(b) If is associative and is commutative in the sense

= (-1)mm'+nn'
71

P C
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n+m

(c) en em = e

(d) #n=(em417)(D

(C # emt) 0 (en i 7 ).

(e) For el the homomorphism of R-modules

e : Mm, n -. Mm+l, n+l, e(C) = e1 # C,

is an isomorphism for n < 2m. Moreover e maps an element
of prime power order pv to an element of order pv or pv-1

(f) e(C O 77) _ (eC) O (eri).

(g) For yr : Mm, n _. Mmr, n we have p yr(C) = 0 if r = pv is a
prime power and m is even. Otherwise yrQ) = 0. Moreover

yr(C) = 0 for C e Image e.

(h) YnYm _ (m n)!
(m!)

n
n!

m, n

(i) Yn(C O 77) _ , ,n(,) O Yr(77) with
r?1

rr(0 = E V. Yi
i2 +... +ir n i r
il,...,ir>1

(2. 4) Remark. For M** in (2. 1) the homomorphism e in (e) is the
double suspension on Mm, n, m odd, and is the identity if n is even.
The double suspension was studied by Toda and in [15]. There it is shown
that e has the properties described in (e) above. That e is an isomor-
phism for n < 2m is the Freudenthal suspension theorem if m is odd.
All other properties of M** as listed in (a) ... (i) are proved in
chapter III. We call M** in (2. 1) the module of spherical coefficients.
This module is only defined for 1/2, 1 /3 e R.

(2. 5) Remark. By use of (d) and (b) we see that the homomorphism e
and the pairing O determine #. Moreover from (g) and (h) we derive

that the invariants yp (p a prime) determine all other invariants yr.
Moreover (d) and (i) show that yr vanishes on products C # rl. Clearly
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we have en # ( = e ...
V

(2. 6) Remark. Modules of homotopy coefficients forma category.
The morphism M -+ M' are of bidegree
all operations. For example R with

Rm,n=

(0, 0) and are compatible with

0 for m#n

i R for m=n

is in a canonical way a module of homotopy coefficients and we have for
each M canonical morphisms

i ERc- M-+R

of modules of homotopy coefficients. The module of spherical co-
efficients is the attractive object in this category of homotopy coefficients.
It is the main problem of homotopy theory to find additional algebraic
properties which characterize this object uniquely.

(2. 7) For R = Q we have an isomorphism M** of coefficient

modules.

We now describe the operation of M** on the functor M*(. , R).

More generally than (ii) in (2. 3) there is the bilinear pairing of R-modules.

(2. 8) MR' n )R Mn(X, R) 0 Mm(X, R)

defined by (r (D x)- = ? a x, see (1. 6).
This pairing has the following algebraic structure:

(2. 9) Definition. Let A be an algebra with divided powers, see (0. 5).
We say A is an M-algebra if for homotopy coefficients M = M*R* we
have a bilinear pairing of R-modules (m, n > 1)

MRm,n9) RAn - Am

with the following properties (, 71 E M, x, y E A)

enOx=x for the elements en EMn,n=R
(((D i)Ox=rO(77(D x)
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(c) Ox)u (17(D

yn(( (D X) = ri(d) yr(x), see (2. 3) (i), n > 1.
r>1

Let Div algM be the category of M-algebras. Morphisms are
the homomorphisms f : A A' in Div algR with f(C 0 x) = C O f(x)
for E M, x e A, see (0. 5).

(2. 10) Proposition. With the structure (2. 8) the spherical cohomotopy

algebra (1. 2) is a contravariant functor

M*(... , R) : Top, - Div algM.

Proof. On maps f : X' X we define

f*(x)- = x o (Ef)

for x E M*(X, R), compare VI (4. 1). //

The coefficients M*R* operate also on the homotopy functor
n*(St 9) R, that is we have a pairing

(2. 11) (7m(QY) 9 R) x MR ' n zrn(aY) 0 R

defined by (a O t) = a o where a E [ESR , YR] denotes the adjoint
of a.

This pairing is not bilinear in general, it has the following
properties:

(2. 12) Definition. Let L be a Lie algebra, see (0. 4). We say L is
a Lie algebra over the homotopy coefficients M = M*R*, if we have a
pairing

Lm X MR'
n O Ln

which satisfies the following set of axioms: (a, E L, t, 77 E M)

(a) aOem=a
(b)

(c) [a O t, R O 77] _ [a
M,

N] O (compare
N, M? 1

II (3.4)1).
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(d) The pairing is not bilinear, we have

(aa) O 4 = a 0 (a() = A(a O C) for a E R

(aOC)+(a(D however

I
n>2

where cn(a, 0) is the Zassenhaus term

cn(a, R) O ti'n(()

V

cn(a, /3) _ I [a, 0]0(d)
dEDn

evaluated in the Lie algebra L, see II (2. 8). Since it is only for even
degrees of C that yn(C) may be non trivial we have no signs in the formula
for cn(a, 6).

Let LieM be the category of Lie algebras with coefficients M.
Morphisms are the homomorphisms f : L - L' in LieR with
f(a(Dr)=COf(a) for rEM, a EL, see(O.4).

Again we know from chapter II and III:

(2. 13) Proposition. With the structure (2. 11) the homotopy Lie algebra
is a covariant functor

L(. , R) : Top, - LieM

with L(Y, R) = n ,(62Y) ® R, see (1. 1). For f : Y - Y' in Top1 we have
f*(a) _ (S2f) o a for a c L(Y, R).

§ 3. The Hurewicz and the degree map

Let en E Hn(Sn, X) C Hn(Sn, R) be an integral generator and let
en E H(Sn, R) be the dual generator with en(en) = 1. We have natural
transformations of functors

(3. 1) 0: i*(nY) 0 R - H*(nY, R)

with O(y) = y*(en) .

(3. 2) deg : M*(X, R) - H*(X, R)

with tp(x) = s-lx*sen
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where s denotes suspension, compare the definition of x in (1. 6).

is the Hurewicz map and deg is a variant of the classical degree map.
We now describe to what extent 0 and deg preserve the alge-

braic structures. Clearly for the augmentation s : M*R* - R with

E(em)=l and 6(0=0 for L E Mm'
n with m * n we have

(a®L)_0(o)- E(O
deg(r ®x) = c(Z) deg(x) .

We now consider the Hurewicz map 0: The homology H*(G, R)
of a connected loop space or topological group G is a graded (in general
non commutative) algebra. The product is the Pontrjagin product

where

(3. 3)

x* y= u*(x x y) (x, y E H*(G, R))

x : H*(G, R) ®H*(G, R) -+ H*(G x G, R)

is the cross product and where p : G x G - G is the multiplication on G.
We associate with the product * the bracket

[x, y] = x *y - (_1) Ixl ly, y * x,

so that H*(G, R) is a Lie algebra. It is a result of Samelson that 0 in
(3. 1) is a homomorphism of Lie algebras. Equivalently we may say that

for the universal enveloping algebra U() the Hurewicz map 0 gives
us a map

(3. 4) 0 : U(r*(G) (9 R) - H*(G, R)

of algebras. For a Lie algebra L, U(L) is not only an algebra, but a
Hopf algebra with a commutative diagonal A and with primitive elements
PU(L) = L, see [15].

(3. 5) Proposition. If the cross product (3. 3) is an isomorphism, the
diagonal : G - G x G induces a Hopf algebra structure on H*(G, R)
and then 0 in (3. 4) is a homomorphism of Hopf algebras.
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The cross product x is an isomorphism, if, for example,
H*(G, R) is a free R-module, in particular, if R = Q.

V

(3. 6) Milnor- Moore theorem [33]. For R = is an isomorphism

of Hopf algebras.

We now consider the degree map in (3. 2). The cohomology

H*(X, R) is a graded commutative algebra. The product is the cup
product. It is easily seen that deg is a homomorphism of commutative
algebras. Moreover for the divided powers y on M*(X, R) we have
the equation

(3. 7) r ! deg(yrx) = (deg(x)) r

Therefore, if deg is surjective and if H*(X, R) is a free R-module, we
see that the degree map is a homomorphism of algebras with divided
powers. In particular, we have by (1. 4):

(3. 8) Proposition. For R = Q the degree map deg:M*(X, H*(X,

is an isomorphism of algebras with divided powers.

To some extent this is the dual of the Milnor-Moore theorem.

Proof of (3. 7). Serre [36] has shown that the integer cohomology

of the loop space t2ESn of a sphere is an algebra with divided powers
over Z. Hnk(S2 Sn, Z) is a free Z-module generated by xk and if n
is even the cup product is determined by xk = k! xk. //

Proof of (3. 8). We have to prove that for n odd

deg : Mn(X, [X, SQ] -' H"(X, Q)

is an isomorphism of Q-vector spaces. Clearly deg is a bijection by
(1. 4). In fact (1. 4) is an equivalence of H-spaces. We show that the
abelian group structure induced by deg on [X, Sn ] is the one defined
in (ii) of (1. 7). For this we consider the suspension map

[X, Sn] -+ [EX, ESA].
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For the H-space Sn = K(Q, n) this map is not a group homomorphism
since K(Q, n) - PFK(Q, n) is not an H-map. From the Hopf construc-
tion on the multiplication of K(Q, n) we see that

-Ex- =[jn,

Clearly for R # Q the functor M* is much more complicated
than cohomology. Still, if H*(X, R) is finitely generated as an R-
module then so is M*(X, R). Moreover we have the following special

case.

(3. 9) Proposition. Let X be a CW-complex of dimension k which
is (c - 1)-connected, then deg in (3. 2) is an isomorphism if 1/p e R
for all primes p with p < (k - c + 3)/2.

Proof. Since 77 2p- 3+n(Sn) (n odd), is the lowest group in
n7*(S) containing p-torsion, see 9. 7.13 [38], we know

SR -+ K(R, n) n odd

0F_ n °- S2K(R, n+l) = K(R, n) n even
S2i

are k-connected if 1/p E R for all primes p with n + 2p - 3 < k - 1.

Proposition (3. 9) is a generalization of (3. 8), thus there should
be a dual of (3. 9) which generalizes the Milnor- Moore theorem (3. 6).

We now consider the special situation where the Hurewicz map
or the degree map is surjective. We say a space Y is of finite type
over R, if Hn(Y, R) is a finitely generated R-module for all n.

//

(3. 10) Lemma. Let Y be a simply connected space of finite type over
R. Then the following statements are equivalent:

(i) H*(S2Y, R) is a free R-module and : U n*(l Y) 0 R -' H*(QY, R)

is surjective, see (3. 4).
(ii) There exists a homotopy equivalence

N n.
f2yR - x f2 R , see (1. 3),

i=1
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with n s n <_ ... and N < oo.

1 2

For N = - the sequence ni tends to - and the product has the weak
topology.

If (i) or (ii) are satisfied we say S2YR is decomposable.
n.

Proof of (3. 10): (ii) = (i). Let ai : SRI 52YR be the restriction
n. n.

of the homotopy equivalence a in (ii) to SRI
C

S2R1. If ni is even we
n. n.

extend ai as an H-map to J(SR1) = S2R1. The product of these extensions

is then again a homotopy equivalence 0. In fact, 0 induces the same
map in cohomology as a. This implies that 0 is surjective.

(i) (ii). Since 3 is surjective the canonical map

UPH*(S2YR) H*(SZYR)
T

is an isomorphism. Clearly T is surjective since factors over T.
Since H*(62YR) is a free module, we have injective maps i, j in the

commutative diagram

i
UPH*(S1YR) UPH*(S2Yq)

T = 1 T

H * (52YR)
j

H * (52YQ)

Therefore by (3. 6), T is also injective. The isomorphism T shows that
¢ = T(UQ). Thus 0 in (3. 1) must also be surjective. We now choose an
ordered base bi, i > 1, of PH*(52YR) and we choose ai with 0(ai) = bi

n.
These maps ai : SRI - 52YR, ni = I bi I, yield a map

n.
Q : X 5281-' S2YR

as in the proof (ii) = (i) above. Clearly 6 induces an isomorphism
n.

/3* : PH*(X62 R1) PH*(52YR) .

By use of the Poincare-Birkhoff-Witt theorem (see 2. 6 in [151) the iso-
morphism T shows that
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n.

Q* : H,k(X0R1 = H*(QYR)

is an isomorphism of R-modules. Thus 0 is a homotopy equivalence. //

More easily we obtain the dual of (3. 10):

(3. 11) Lemma. Let X be a connected space of finite type over R.
Then the following statements are equivalent
(i) H*(X, R) is a free R-module and deg : M*(X, R) - H*(X, R)

is surjective, see (3. 2).
(ii) There exists a homotopy equivalence

N n.
EXR i"1 SR

with n1 < n2 < ... and N < co. For N = oo the sequence ni
tends to -.

In this case we say EXR is decomposable.

Proof. We prove (ii)= (i). We choose a bases B = {b1, b2,...
of H*(X, R) and elements j . with deg(fi) = bi and bf = Ibil + 1. Then

the sum

that is, the limit of the finite subsums, is a homotopy equivalence. //

(3. 12) Definition. For the double graded R-module of coefficients
M = M*R* in § 2 and for graded R-modules

H= {Hn, n>0) and n={7r n, n>0)

we define the tensor product M 9) H and n 9) M as graded modules by

(M I&H)n = x MRj 9) Hj

j> n

(zr 9 M)n = ® nj 9 Ml' n
n>j

(3. 13) Theorem. Let EXR and PYR be decomposable. Then there
exist isomorphisms of R-modules
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M*(X, R) = M H*(X, R)

n* (12Y) 9) R = PH*(PY, R) 9) M.

V

Proof of (3. 13).We choose a basis (b1, b2, ... ) of

PH*(52Y, R) and elements ai with 0(ai) = bi as in the proof of (3. 10).
Then it is an easy consequence of (3. 10) and of (2. 11) that

a* : (PH*(c2Y, R) +9) M)n 7rn(SZY) 9) R

fib. iai0
i i

is an isomorphism of R-modules.
Now we choose a basis B = 1b1, b2, ...) and elements Qi as

in the proof of (3. 11). This yields the isomorphism

Q* : (M 9) H*(X3 R))n Mn(X, R)

9bi ID R,
i i

If X is not finite dimensional, we use the fact that Mn(X, R) is an
inverse limit, see (1. 5). Assume now, X is finite dimensional.

If n is even, it is an easy consequence of (3. 11) that Q* is an
isomorphism. If n is odd, we consider the diagram

Mn(X, R) = [X, SnR] ® Mn, bI

[EX, ESR x
bEB

y2 1
2n[EX, ESR ]

n'Ibj+1 (ESR)

where suspension E is an inclusion and where image (E) = kernel (y ).
2

From (3. 11) we have the bijection p*.
We deduce from (ii) in (1. 7) and (2. 1) that EQ* and thus P* is

injective. For surjectivity of rf* it is enough to prove ker y2 c im(E3*).
It follows from (2. 2) that any a E [EX, ESR] has a unique presentation

bEB
E
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a = I ((Esb) + [J, J] ° 71b) ° r 1(b)

bEB

with f E
n,

I b I E 2n, Ibl,
b MR

' b MR

From (ii) in (1. 7) and from the formulas in III we derive

a = Efl*(blb c B) + [j, j]W

with an appropriate W. Thus y2 a = 2W, see III, and therefore
y2 a = 0 iff W = 0. //

There are various well-known examples of decomposable sus-
pensions and loop spaces in literature:

(3. 14) Lemma. (A) If EX and EY are decomposable then also
E (X X Y).

(B) If OX and QY are decomposable then also Q(X - Y).

Proof. This is a consequence of the well known homotopy equi-

valences of D. Puppe and Ganea

E(XxY)^-Ex" Y'EX^Y
and

P(x - Y) 12x x )Y x n T (six - 12Y),

see [11].//

(3.15) Examples. The following loop spaces and suspensions are
decomposable:

(a) StESR

n

QR
X

VZn, n odd,

n(b) 12(ES 1 " ... ES k), more generally,

n n(c) let T = ES x ...
X

ES be a product of spheres and let T(n)l k

be the union of all n-fold subproducts, then c2T(n) is decompos-
able.

(d) E (product of spheres)
(e) E (,,SR)

[(a) and (e) were proved by James, (b) is the original result of Hilton
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[23] and follows from (3. 14) as well as (d). Moreover (c) is a result of
Porter, see: Am. J. Math. 87 (1965) 297-314, see also Am. J. Math.
88 (1966) 655-63. ]

There are many more decomposable suspensions as shown by the
following remark, which is proved in [9].

(3.16) Remark. For each rational space XQ of finite type there is a
space Y with YQ XQ so that ZYR is decomposable.

The statement dual to this remark should be true as well. Clearly
any rational suspension or loop space of finite type is decomposable.
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VI. GROUPS OF HOMOTOPY CLASSES

§ 1. Nilpotent rational groups of homotopy classes

We first consider the rationalization [X, G]Q of the nilpotent
group [X, G]. This study will serve as a guide in the more complicated
situation R c Q, R 3 Q.

A group G or a Lie algebra L is nilpotent if there exists an
integer k > 1 such that an iterated bracket of any k of its elements
taken in any order is zero. The bracket is the commutator in G and
the Lie product in L.

For a nilpotent (non graded) Lie algebra L the Baker-Campbell-
Hausdorff formula (see chapter I)

x y = x + Y + 2 [x, Y] + i2 [[x, Y], Y]

+ 1 22
[[Y, x], x] + .. .

provides a group multiplication on the underlying set of L. This group
exp (L) = (L, ) is a nilpotent rational group. Moreover the correspon-
dence L i- exp L is even an equivalence of categories as shown by
Malcev.

The following types of Lie algebras appear naturally in homotopy
theory.

(1. 1) Definition. Let (C, a) be a graded commutative co-algebra
over R with C o = R and let (n, [ , ]) be a graded Lie algebra over
R with no = 0. The R- module of degree zero homomorphisms

HomR(C, n)

is a non-graded Lie algebra over R with the Lie bracket defined by
0 fog [, ][f, g] :C - COC - L®L -e L
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If Cn = 0 for all n > N or if Ln = 0 for all n > N, then HomR(C, n)
is a nilpotent Lie algebra over R. In I (3. 7) we gave a presentation of
the group

exp HomQ(C, n)

in terms of generators and relations.
If HomQ(C, n) is not nilpotent we define the group

(1. 2) exp HomQ(C, n) = lim exp HomQ(C[n], n)

to be the inverse limit of nilpotent groups. Here C[n] is the sub co-
algebra of C of all elements of degree < n. The inverse limit is taken
over the inclusions C[1] C C[2] C ... C C.

As an example of this group we take for C the homology co-
algebra H*(X, Q) and for n the homotopy Lie algebra n*(cY) Q.
We prove:

(1. 3) Theorem. Let X and S2Y be connected CW-spaces of finite
type over Q. Then we have an isomorphism v of groups

[EX, Y] Q - exp HomQ(H*(X, Q), n*(1iY) C) Q)

which is natural with respect to co-H-maps EX -+ EX' and H-maps
52Y -# S2Y', see II (1. 3).

Since EXQ is decomposable it follows easily that
[EX, Y]Q = [EXQ, YQ] is the inverse limit of the groups [F,XN, Y]

Q,

Remark. The isomorphism in (1. 3) is implied in the work of
H. Scheerer [35]. The result can also be derived from Thom's and
Sullivan's minimal model [40] of the function space YX. This model is
constructed by S. Halperin and C. Watkiss in [22], (see also [20, 37]),
and by use of [14] we obtain the fundamental group n 1(YX)Ql = [EX, Y]
from it. Still, this very neat formula (1. 3) does not appear in the
literature.

Our method of proving (1. 3) is different from those in the remark.
The part of rational homotopy theory we need is that an odd dimensional
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sphere Sn is rationally an Filenberg-Mac Lane space K(Q, n), a result
first proved by J. P. Serre in [36].

The isomorphism a in theorem (1. 3) can be characterized by
use of the elements R in V (1. 6). In fact a is the unique homomorphism
of groups satisfying

(1. 4) a(x & a) = a o x for

x E Mn(X, Q) = Hn(X, Q) = Hom(Hn(X1 Q), Q)

1 a E n (SZY) Q = [ESn
,

y
]

n Q Q
with n > 1. In (1. 4) the element x & o E Hom(H*, n*) is the homo-
morphism t - x(t) a for t E H*. Moreover the composition

a R : EXQ - ESQ YQ is an element of [EX, Y]Q by V (0. 2).
Since EXQ or 1YQ is decomposable we see easily that the

elements of the form a o x generate the group [EX, Y]
(W

§ 2. The exponential group

In § 1 we consider the exponential group structure on the rational
Lie algebra of homomorphisms HomQ(C, IT).

We here generalize this type of group to the non rational case.
Let R be a subring of Q with 1/2, 1/3 E R and let K = (K**, 0, #,
yr, er) be a module of homotopy coefficients, V §2.

Assume we have a K-algebra A E Div algK and a Lie algebra n
over K in LieK. These algebras are subject to pairings

Km, n x An - Am, (k, x) i- k G x

nm x Km, n _, n, (a, k) i- a G k

as we defined in V (2. 9), V (2. 12).
If A is finitely generated we define the exponential group:

(2. 1) expK(A, n) = FG( u An x nn)/-
n>1

as follows: FG(M) denotes the free group generated by the set M. The
relation - for the exponential group is generated by the relations
(i) ... (iv):
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(i) (x, a)-1 (y,
a)-1

(x + Y, a) .- (x 2 Y, [a, a])

(ii) (x, a)(x, i3) (x, a + (3) II (Ynx, cn(a, Q))
n>2

(iii) (x, a)-1
(y, /3)-1(x, a) (y, R)_ II H (ymx u Yny' Rm n(a, /?))

n>1 m>1 '

(iv) (k (D x, a)-(x, a(D k) for

where
and in

Clearly in (i) we have lxl = lyl = lal

The products in (ii) and (iii) are finite since we replace (0, a)

x, y E A and a, f3 E n.
(ii) lxI = lal = 1131.

by the neutral element of the free group. The Zassenhaus term cn(a, 13)
and the commutator term Rm n(a, Q) in (ii) and (iii) are given by the
formulas in I (1. 13) and I (2. 6). Clearly these formulas are evaluated
here in the Lie algebra n.

If A is not finitely generated but of finite type we define

(2. 4) expK(A, r,) = lim expK(A[n], lr)
4

where A[n] is the R-module obtained from A by dividing out all elements
C O x with E Mk' m, x E Am and m > n, k > 1. Clearly 0

for k > n. The quotient map

q :AA[fl]

induces in a unique way the structure of an M-algebra on A[n]. The in-
verse limit is taken over the projections - A[n] - A[n-1 ] -+ ... . Here
we use the following functorial properties of the construction expK(A, n).

Clearly any triple

f :A-'A'
X :K-K'
g:n - n,

of homomorphisms with f (k O x) = X (k) O f(x) and of g(a G) k) = X (a) O g(k)

induces a homomorphism of groups

(2. 5) (f, x, g)* : expK(A, n) - expK,(A', n')

mapping a generator (x, a) to (fx, ga). We say in this case f and g
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are equivariant with respect to X.

§ 3. Groups of homotopy classes

Since for finite dimensional X or finite codimensional Y the
group [EX, Y] is nilpotent we can consider the R-localization [EX, Y]R
of this group with respect to any subring R C Q of the rationals. We
now show that [EX, Y]R is an exponential group in the sense of § 2 if
2X or PY are decomposable. Moreover we consider the following

problems which are dual to each other:
(A) Under what condition on X the group [EX, Y]R can be fully

described in terms of the cohomology ring H*(X, R) and the
homotopy Lie algebra n*(cY) ® R?

(B) Under what condition on Y the group [EX, Y]R can be fully
described in terms of the cohomotopy algebra M*(X, R) and the
homology Lie algebra PH*(cY, R)?

We know that for R = Q we need no condition on X or Y in (A) and
(B) respectively. Clearly the case R # Q is more complicated.

Let X and S2Y be connected and assume X is finite dimensional
or 62Y is finite codimensional. Then we introduce for the spherical
cohomotopy algebra M*(X, R) and the homotopy Lie algebra r*(S2Y)®R
the homomorphism of R-local groups.

(3. 1) expM(M*(X, R), r*(f2Y) ® R) [EX, Y]R
PR

denotes the coefficients in V § 2. On generators (x, a)where M = MA*
the homomorphism PR is defined by

PR (x, a) = a o x

where a E rn(SiY) ® R = [ESR, YR] and E [EXR, ESR see V (1. 6).

In chapter II we have proved that
PR

is a well defined homo-

morphism. If R = Q then PR in (3. 1) is exactly the isomorphism
described in (1. 3), compare I (3. 7).

If EX or S2Y are decomposable, see V (3. 11) and V (3. 10), we
will prove that PR is also an isomorphism. In fact we even prove for
the non finite dimensional case
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(3. 2) Theorem. Let X and n Y be connected and of finite type over
R. If EX or nY are decomposable there is an isomorphism of R-local
groups

expM(M*(X, R), 77 *42Y) ® R) = [EXR, YR]

which is natural with respect to Co-H-maps, EX - EX' and H-maps
see § 4.

(3. 3) Definition. (A) Let EX be decomposable. Then the degree map

deg : M*(X, R) - H*(X, R)

is a surjective map of algebras with divided powers, see V (3. 7). We
say EX is splittable if there exists a right inverse

or : H*(X, R) -+ M*(X, R)

of deg (deg a = id) which is also a homomorphism of algebras with
divided powers.

(B) Let S2Y be decomposable. Then the Hurewicz map

0 : 71 *(52Y) ® R - PH*(52Y, R)

is a surjective map of Lie algebras. We say nY is splittable if there
exists a right inverse

T : PH*(QY, R) - i*(1Y) ® R

of 0 which is a homomorphism of Lie algebras.

(3. 4) Theorem. Let X and QY be connected and of finite type over
R. If EX is splittable, the homomorphism

PR (a, i, id)* : expR(H*(X, R), n*(RY) ® R) = [EX, Y'R

is an isomorphism of R-local groups. If 62Y is splittable, the homo-
morphism
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PR
(id, i, T)* : expR(M*(X, R), PH*(f2Y, R)) = [EX, Y]R

is an isomorphism of R-local groups.

We use (2. 5) for the inclusion i : Rte-' M, see V (2. 6). The

theorem implies that in case EX and 52Y are splittable the group
[EX, Y]R depends only on the cohomology ring H*(X, R) and on the
homology Lie algebra PH*(S2Y, R).

The reason is that M*(X, R) for splittable EX is the 'M-
extension of H*(X, R)' and 7, *(S2Y) 9) R for splittable S1Y is the M-

extension of PH*(cY, R), see chapter VII.

Proof of (3. 2) and (3. 4). We only prove (3. 2). With modifica-

tions we obtain along the same lines the proof of (3. 4). Let G = [EXR,
and let G[n] be the quotient group of G obtained by dividing out all
elements

EX or QY is decomposable, it is easily seen by V (3. 11) and
V (3. 10) that the canonical map

G - lim G
[n]

is an isomorphism. With definition (2. 4), for the proof of (3. 2) it is
enough to prove

(1) G[n] - expM(M*(X, R) [n], n*(c Y) 9) R)
PR

where pR is defined as in (3. 1) by pR(x, a) = a o X. Using again V

(3. 11) or V (3. 10) we see that
PR

in (1) is in fact surjective. To prove

injectivity we first observe that all cosets of

H = expM(M*(X, R) [n]' 77 *(c2Y) ® R)

are represented by words

(2) (xI, a I ) ... (xr, ar)
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of generators (xi, ai), xi E M*(X, R) with Ixil < n. This we know since
by (i) and (iv) in (2. 3) we have

(3) (0, a) - (x, 0) - neutral element

(x, a)- I ~ (-x, a) _ (x, -a)

We say a coset g c H has length L(g) s r if it contains a word of
generators as in (2) of length r. For the assumption

(*) SX is decomposable and

(*)' ftY is decomposable

respectively we prove the proposition of (3. 2) in parallel. First we
choose as in the proof of V (3. 19) and V (3. 10)

(4) a basis B = Ib1, b2 ... ; of H*(X, R) with lb1 I < lb2I <_ ...
and elements bi E M*(X, R) with deg bi = bi

(4)' a basis B = 101' O2' . 11 of PH*(S1Y, R) with

and elements pi E 1*(f2Y) OR with ¢(Oi) = Pi
loll < 1021<...

Inductively we prove: Each element g E H contains an element of the
form

N
(5) II (bi, with appropriate (i

i=1

M
(5)' II (xi, (3i) with appropriate

i=1
X.

if the assumptions (*) and (*)' hold respectively. Here N and M are
determined by

I bN I I (3M I= n but

IbN+lI = IOM+11 =n+1.

First we obtain (5) and (5)' for L(g) = 1. For a generator (x, ) E H
we know by use of (3. 13) that there exist elements xi and Ci in M with
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(6) X=
N

xi O bi (if (*) holds).
i=1

(6)'
M

O i (if (*)' holds).
i=1

We call xi and (i the coordinates of x and ( respectively. If we

apply inductively the relations (i)... (iv) in (2. 3) we see that

N
Ob(7) (x, x®

i=1
N
II (b., (x,)i)

i=1

with appropriate (x, 1) i E 7r*(RY) CD R. In fact

.(x, )i = O xi + ,1 RI SJ O (xj # xk) 0 (b. u bk) i
j> k

We call such elements multiplicative coordinates of (x, ) with respect
to B. Similarly we get

M
(7)' (x, (x, Gi 0

i=1
M
TI ((x, c)1, Vii)

i=1

with appropriate (x, 1 E M*(X, R). We now define the connectivity of
an element (x, () by

(8) 9(x, O > n if xi = 0 for lbil < n

(9) P(x, ()> n if (i = 0 for lril < n.

Clearly for all (x, t°) we have P(x, ) > 1. Moreover we check that for

the multiplicative coordinates we have

(x, )1 = 0 or (x, 0

if i < 8(x, (). This follows since xi = 0 for lbil < lxl.
We now apply the same inductive process as in the proof of II

(5. 9). This way we get the proposition in (5) and (5)'. As in the proof
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of II (5. 9) we derive from (5) and (5)' injectivity of pR. //
VI

(3. 5) Examples of splittable suspensions and loop spaces.
(a) The suspension EStESn is splittable

N n,
(b) The suspension of a product of spheres E(x S 1) is

splittable. N
i=1

n
(c) More generally E(x nR) is splittable, see V (1. 3).

i=1
(d) Assume Tr

1
.(X) E)R = 0 for i=1, ..., c-1 and

Hn(X, R) = 0 for n > 2c. If EX is decomposable then EX is also
splittable. (Thus for example orientable surfaces are splittable over R. )
This follows since by use of the Hopf classification theorem 4. 3. 14 [11]
deg : Mn(X, R) - Hn(X, R) is an isomorphism for the top dimension
n = 2c.

(e) Proposition V (3. 9) yields examples of splittable suspen-
sions.

(f) The loop space of a wedge of spheres
or of a fat wedge T(n) is splittable, see V (3.15).

(g) See III (4. 5).

§ 4. H-maps and Co-H-maps

ES 1 ... v ESnk

In this section we consider the naturality of the isomorphisms
obtained in § 3. First we observe (see II (1. 3)):

(4. 1) Proposition. Let X and X' be connected spaces. Any Co-H-
map f : EX - EX' induces a homomorphism f* : M*(X', R) -+ M*(X, R)

of algebras with divided powers which is equivariant with respect to the
coefficients M in V § 2. The homomorphism f* is defined by

(f*(x))- = x o f

compare V (1. 6).

Proof. From III (6. 1) and II (2. 7) it follows that-2(x f) = 0

if I x I is odd. Therefore 7C o f is desuspendable.

(4. 2) Proposition. Let P Y and 62Y' be connected. An H-map
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g : 52Y - S2Y' induces a map of Lie algebras g* : r, *(c Y) ®R- n*(aY') OR

which is equivariant with respect to the coefficients M.

Proof. That g*(a O () = g*(a) 0 r follows from the fact that,
for the H-map g, (RR) o (SZEg) g o (SlR) where R is the evaluation. //

(4. 3) Remark. If the homology Lie algebra is defined, it is clear that
an H-map g induces a homomorphism of homology Lie algebras

g, : PH*(12Y, R) - PH*(S?Y', R) .

It is not so clear under what condition on X, X' and R a Co-H-map
f : EX -+ EX' induces a homomorphism of cohomology algebras
s- If*s : H*(X', R) - H*(X, R). If EX and EX' are decomposable it
follows from (4. 1) that s-1f*s is in fact an algebra homomorphism.

From (4. 1) and (4. 2) we obtain

M : [EX, EX,]Co-H - Div algM(M*(X', R), M*(X, R))

L : [S?Y, 52Y']H -+ LieM(n*(52Y) ®R, n*(f2Y') ®R)

associating to a homotopy class of a Co-H-map f or of an H-map g the
induced map which is equivariant with respect to the coefficients M = M*R*.

(4. 4) Theorem. Let EX, EX' and f2Y, 12Y' be R-local and decom-
posable. Then M and L above are bijections of sets.

Proof. We define inverses M', L' of the functions M and L
above as follows. Let p =

PR
be the isomorphism in (5. 3),

M'($)= p-1(exp($,
1)(p 1EX,)),

L'(Vi)= p-1(exp(1, V,,)(p 152Y)). //

As a special case we obtain for R = Q

(4. 5) Corollary. Let X, X', S2Y, 62Y' be connected rational spaces
of finite type. Then we have bijections of sets:

[EX, EX']Co-H . algQ(H*(X', Q), H*(X, Q))
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where algQ denotes the set of algebra homomorphisms over (Q), and

[S2Y, S2Y']H z Lie (71,

where Lie
Q

denotes the set of Lie algebra homomorphisms over Q.

(4. 6) Corollary. Let X, X', P Y, u Y' be connected rational spaces
of finite type.

(A) There is an equivalence EX - EX' of Co-H-spaces if and
only if there is an isomorphism of algebras H*(X, Q) = H*(X', Q).

(B) There is an equivalence nY - SZY' of H-spaces if and
only if there is an isomorphism of Lie algebras r,*(llY) 9 Q= 77*(S2Y')®Q.

Clearly, corollary (4. 6) has a generalization for decomposable
suspensions or loop spaces which are R-local, R c Q. In rational
homotopy theory we have formal and coformal spaces:

(4. 7) Definition. We say k is the formal type of a rational space X
if the cohomology algebra H*(X, Q) is a Sullivan model for X. We say
Y is the coformal type of the rational space Y if the homotopy Lie-
algebra r*(f2Y) 0 Q is a Quillen model for Y, see [10].

(4. 8) Corollary. Let X and PY be connected rational spaces of
finite type. Then there are natural Co-H- and H-equivalences

vEX - EX, l:Y- fY

respectively.

The question of realizing an abstract homomorphism
H*(X, Q) - H*(Y, Q) between cohomology algebras of given rational
spaces X and Y is intensively studied in [17, 21, 42]. From the bi-
jection in (4. 5) we see that this problem is equivalent to the problem
whether a given Co-H-map EY - EX is actually a suspended map. This
fact yields many examples of Co-H-maps which are not desuspendable.

The desuspension problem is naturally embedded in the problem
of determining the James filtration:

(4. 9) Definition. A homomorphism 0 : H*(X, Q) - H*(Y, Q) of
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algebras has James filtration s n with respect to rational spaces X
and Y if the Co-H-map M-1(¢) : SY - EX has James filtration s n.
That is, the adjoint : Y - 0ZX J(X) of M 1(0) factors over the

inclusion Jn(X) C J(X) of the n-fold reduced product space Jn(X) see

[?7].

Clearly 0 has James filtration 1 with respect to X and Y if
and only if 0 is realizable, that is if a map f : Y - X exists with f*= ¢.

These results on rational spaces can partially be extended to
splittable spaces.

Let 1; SplitR be the following category: Objects are pairs
(X, a) where sX is splittable and a is a splitting of the degree homo-
morphism, see (3. 3). Morphisms are homotopy classes of Co-H-maps
f : EX - EX' which are compatible with the splittings that is f*a'=af*.

Similarly let f SplitR be the category of pairs (Y, a) where
1Y is splittable and a is a splitting of the Hurewicz homomorphism,
see (3. 3). Morphisms are homotopy classes of H-maps g : nY - QY'
with g*a = ag*.

Using (4. 3) we have functors

(4. 10) H*( , R) : SplitR - Y(Div alga)

PH*(62 . , R) : 9 SplitR - 0= (LieR)

to the subcategories of Div alga and LieR of objects which are free
R- modules of finite type. More generally than (4. 5), we obtain from (3. 4):

(4. 11) Theorem. The functors (4. 10) are bijective on morphism sets.

(4. 12) Conjecture. The functors (4. 10) are equivalences of categories.

It might be possible to prove this conjecture for E SplitR with a
construction similar to the one of formal spaces in [17].

Clearly the conjecture is true for R = Q.
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VII. THE HILTON-MILNOR THEOREM AND ITS DUAL

§ 1. The category of coefficients

We here show that a module of homotopy coefficients as defined in
V (2. 3) is equivalent to a monoid in the category 'coefR' of coefficients.

Let R c Q be a subring of

(1. 1) Definition. We call a tuple (M, #, yp, er) a module of co-
efficients if
(i) M = MR* _ i Mm, n, in, n - 11 is a double graded R-module with

Mm, n =
0

R

m> n
m = n

finite group m < n

m, n m', n' m+m', n+n'(ii) # : M ®R M M is a R-bilinear pairing
C*71 for in, n, m', n'>l.

(iii) yp : Mm, n _. Mmp, n, p a prime > 2, is a homomorphism of
R-modules (m, n > 1).

(iv) en= 1 ER = Mn'n, n> 1.
Moreover the following relations shall be satisfied.

(a) # is associative
(b)

(c)

(d)

# is commutative in the sense
en # em = en+m
For el the homomorphism

mm'+nn'

e : Mm, n - Mm+1, n+1 el #

is an isomorphism for n < 2m. Moreover e maps an element
of prime power order p'1 to an element of order pv or pv-

(e) For each prime p we have
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Yp

with p 0 and yp(r) = 0 if m is odd. Moreover
yp((#77)=0 for all C, 17 eM.

Let coefR be the category of coefficients over R. Morphisms

are the maps 0 : M -+ N of bidegree (0, 0) which are compatible with
#, y, and er, that is

$((#77)=(g)#($17),
0(Yp) = p a prime,

$(en) = en , n > 1.

We now define a tensor product 9) in this category coefR.

(1. 2) Definition. Let M, N be modules of coefficients. Then we obtain

the module M 9 N of coefficients as follows:
(1) M 9) N is the double graded R-module with

(M N) , n = ® Mm, I E)R Mj n
m< j< n

Then M N as a module is generated by elements ® 77 with
E Mm, J, 77 E Mj' n

(2) The bilinear pairing # on M 0 N is defined by

( 77) # ( ' 0 17') _ (C # ') (77 # ?I')-

(3) The invariants yp : (M 0 N)m, n . (M i N)pm, n are defined by

Yp((9 77) = Yp(() 77 + #p 0 'Y
p (71)

where (#p = # ... # ( is the p-fold product.
(4) en E (M 0 N)n' n is defined by en = en 0 en.

(1. 3) Proposition. If 1/2 E R the structure (#, yp, en) on M N

above satisfies all relations (a, ..., e) in 1. 1).

Proof. We only check that yp is trivial on (M i) N)m' n if m
is odd. For C E Mm' j, 71 E Nj'

n with m and j odd we clearly have
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-y Y (C ®r7) = 0. If j is even we have

Yp(C ® ?7) = #p ®Yp(n).

However

2 2#C_(_1)m +j C##
Since 1/2ER,

VII

In the following let 1/2 E R; then the tensor product M. ® N in
CoefR is well defined.

(1. 4) Proposition. ® is associative in CoefR, that is, for coefficients
M, N, P there is a canonical isomorphism

(M®N)®P=M®(N®P)

in CoefR.

We have the trivial coefficients R in CoefR with

= (0 m#n
(1. 5)

Rm n
!l

R m=n

Clearly we always have the retraction

1 E
R c-+ M R

in CoefR. Moreover we have the canonical isomorphisms

(1.6) R®M=M=M®R.

These observations allow the following definition.

(1. 7) Definition. A monoid in CoefR is a module of coefficients M
together with a pairing

®:M®M- M

which is associative and has the unit R C M, this means, the diagrams
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1 0 OM9M (9) M 0-M0 M

0i1
I

MOM O - M

ROM 101 JMOM E
10i MOR

commute in CoefR.
We now are ready to give an alternative definition of a module of

homotopy coefficients, see V (2. 3):

(1. 8) Proposition. For 1/2 E R C Q modules of homotopy coefficients
(M, O, #, y, e)
CoefR.

are in 1-1 correspondence with monoids (M, O) in

Proof. We only check for a module of homotopy coefficients

M = (M, O, #, y, e) that

(1.9) ((#(')(D (11#?1')=0011)#W on')

for (0 p E Mm' J 0 Mf' n and (' 0 7]' E Mm ,
it

0 Mill 11'. In fact by
the relations (d) and (f) and (b) in V (2. 3) we have:

( # (') 0 (71 # 77') = ((# em') 0 (el # (') 0 (71 # e O (en # 7')

(en#77')

_ ((C 011) # em) 0 (en # ((' (D 71'))

r1)# ( 'Or1').

This shows that for the coefficients N = (M, #, yp, en) given by M the
operation 0 in M yields a monoid structure on N. For this we ob-
serve that formula (i) in V (2. 3) reduces for a prime p because of (g)
in V (2. 3) to
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(1. 10) yp(((D 17)=(yp()Gq+(RpOyp(ri).

Conversely if a monoid (N, (D) in CoefR is given with

VII

N = (M, #, yp, en) we obtain the homotopy coefficients (M, 0, #, yr, en).
Here 0, #, en are the same as in N and the invariants

yr
Mm, n _ Mrm, n

are defined for a prime power r = pv by

(1. 11) pv(o = ypv(o

where yp = yp ... yp is the v-fold composition. (1. 11) follows from

1 - [(pv
1!)(pv-2!

)... (pv!)]p(p! )v
(pv!)(pv !)...(p11)

mod p. //

§ 2. Extensions of algebras by homotopy coefficients

In V § 0 we defined the category Div algR of algebras with
divided powers. We show in this section that modules of coefficients M
in CoefR operate on this category. This leads to an alternative defi-
nition of the category Div algM of M-algebras, defined in V (2. 9). We
show that for each algebra A in Div algR there exists an unique M-
extension of A which is an M-algebra. In particular the M-extension
of a free object in Div algR is a free object in Div algM, so free
objects exist in Div algM.

Let R be a subring of Q with 1/2 E R.

(2. 1) Definition. For an algebra A = (A*, u, y) in Div algR and
for a module of coefficients M = (M**, #, y, en) in CoefR we define
the twisted product M 0 A, which is again an algebra with divided
powers in Div algR.

We first consider the case where A is finite dimensional, that
is, there is d > 0, so that An = 0 for n> d. Then we define M O A

as an R- module by (M O A)° = R and for n > 1 by.
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(1) (M ® A)n = ® Mn' j ® Al.
j>n

We define the structure of M ® A as an object in Div algR by

(2) ®a) u (77 # 7 7 )77)® (aub)

(3) yn( ®a) _ rn ®yr(a)
r>l

where y, t E M, a, b E A. rr(() is defined in V (2. 3) (i). We extend
U bilinearly over M ® A and we extend yn by formula V (0. 5) over
M ® A, compare the proof of (2. 2) below.

If A is not finite dimensional we set

A
k
[n] _

k> n

ksn

0

The quotient map A - A[n] gives A[n] the structure of an algebra with
divided powers in Div algR. Now we define

(4) M®A=lim M®A
4- [n]

to be the inverse limit in Div algR. As a module we have

(M ®A)n = x Mn' j ®Aj .
j>n

(2. 2) Proposition. By (2) and (3) M ® A has a well-defined structure
of an algebra with divided powers.

Proof. We consider the quotient map

OAj(1) U = FAG( u Mn' j x Aj) ® M" i i

j>n j>n

where FAG(X) denotes the free abelian group generated by X. The

relations of n are generated by

a) + b) a + b)
(2) a) + (,j, a) ( + 77, a)

()(, a) - ((, aa) for )ER
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We now define for r > 2

(3) yr : U- (M Or

VII

by yr = 0 if n is odd and if n is even by

(4) Yr(a(, a)) = r rr(() ® ys(a), x E Z,
s>1

and we extend over U by the formula (u, v E U)

(5) Yr(u + v) = Y y. (u) u y- (V)i+j=r 1

i, j>0
Here y°(u) = 1 E (M 6 A)° and u is the product which is well defined
by the formula (2) in (2. 1). The cup product in (5) is symmetric, since
yi(u) E (M FD A)ni where n is even. Therefore, there is in fact an
unique map yr in (3) satisfying (4) and (5).

We have to show that yr factors as a function over n in (1).

We first can check that for the relations in (2) we have for all r

Yr((i,, a) + (C, b)) = ra + b)

yr(((, a) + (77, a)) = yr + 17, a)

yr((a(, a)) = ha))

Then yr factors over
yr(u) = yr(v) for

and n > 2. //

71 since we derive from (5) for u, v E U with
r - 2 then also y(x + u) = y(x + v) for all x c U

(2. 3) Remark. The proof of (2. 2) is simpler if R = Z (p) is the ring
of p-local integers. Then we have for yi on M 9) A the formulas

yp(( ® a) = a + C#p ®yp(a)

and

yi( +9) a) = #, i ® y1(a)

if i < p. Now one checks easily that yp is well defined on M 6 A.
Since 1/2 E R we see that yp(( ® a) = 0 if I C 0 aI is odd.
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(2. 4) Proposition. For modules of coefficients M, N in CoefR and
for an algebra A in Div algR there is a canonical isomorphism

M®(N®A)=(M9)N)9) A

in Div algR.

Proof. Both sides are well defined algebras in Div algR, one
checks that the product u and the divided powers y are the same on
typical elements & 77 a, E M, 77 E N, a E A. //

Clearly we have the canonical isomorphism

(2.5) RiA=A.

With respect to a monoid structure O on coefficients M we now define
the operation of M on A:

(2. 6) Definition. Let (M, O) be a monoid in CoefR and let A be a
algebra in Div algR. We say M operates on A if we have a morphism

(D
M9) A - A, (9)

in Div algR such that the diagrams

Mi M i A

M®A

R iA

commute.

O

(2. 7) Proposition. With the identification in (1. 8) an M-algebra A
with homotopy coefficients M in the sense of V (2. 9) is exactly given by
an operation O of (M, O) on A.
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The category Div algM with homotopy coefficients (M, 0) is

thus just the category of M-equivariant morphisms in Div alga. We
have the forgetful functor

Div algM - Div alga .

With respect to this functor we obtain:

(2. 8) Definition. Let A be an algebra in Div alga. We call an
M-algebra AM the M-extension of A if we have a morphism

i : A - AM in Div alga

with the following universal property: For any M-algebra B and any
0 : A - B in Div alga there exists a unique M-equivariant 0M so that

commutes in Div alga.

(2. 9) Theorem. For a monoid (M, (D) in CoefR and for an algebra
A in Div alga there exists the M-extension A - AM.

Proof. We define AM as an object in Div alga by

AM=MiA.

Now M operates on M i A by

0=09)

It is easily seen that

has the universal property in (2. 8). //
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(2. 10) Definition. Let X = {Xn, n > 0) be a graded set with X0 = 0
empty. We call i : X -+ AM(X) the free M-algebra generated by X if
i is a function of degree 0 with the property: Any function of degree
0, 0 : X - A, into an object of Div algM has a unique extension

AM(X) - A in Div algM with $ o i = 0.

It is easy to see that AM(X) is the M-extension of the free
object AR(X) in Div algR. Therefore we have:

(2. 11) Corollary. There exist free objects in Div algM.

We know that for the graded set X with X0 = 0 the cohomology
algebra

(2. 12) H*( X Q 1x I, R) = AR(X)
XEX

is the free algebra generated by X in Div algR, see V (1. 3) and the
proof of V (3. 7).

§ 3. Extension of Lie algebras by homotopy coefficients

In V § 0 we defined the category LieR of Lie algebras over R.
We now show that modules of coefficients M in CoefR operate on this
category too; we proceed in a similar way as in § 2 for algebras. We
obtain an alternative description of the category LieM of Lie algebras
over M, see V (2. 12). As a main result we prove that for each Lie
algebra L in LieR there exists a unique M-extension of L which is
an object in LieM. The M-extension of a free object in LieR is a free
object in LieM. Thus free objects exist in LieM.

Let R be a subring of Q with 1/2, 1/3 E R.

(3. 1) Definition. For a Lie algebra L = (L*, [ , j) in LieR and for
a module of coefficients in CoefR we define the twisted product L 0 M,
which is again a Lie algebra in LieR. We set, as an abelian group,

(L ® M)n = FAG( U Lm X Mm, n) /

m>1

where FAG(X) denotes the free abelian group generated by the set X.
The relations are for x, y E L, C, 71 E M.
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(i) (X, + (x, 77) - (x, ( + 17)

(ii) (x, + (y, (x + Y, 0 + E (cn(x, Y), Yn(O)
n>2

(iii) (Ax, () - (x, A() for A E R.

The Zassenhaus term c(x, y) is defined as in V (2.12). We denote with
x ®( the equivalence class of (x, () in L ® M. Clearly elements of
the form x ®C generate L ® M as an abelian group. The R- module

structure on L ® M is given by

(iv) a (x (ax) r = x ®(A ), E R.

The Lie bracket on L M is defined on generators by

(v) [x ®C, y 1 77 _ [xM, YN1 (YM # YN?1)
M, N>1

(3. 2) Proposition. L ® M has the well defined structure of a Lie
algebra over R.

Proof. Since Yn is a homomorphism of R-modules by (1. 1)
(iii) we see that L ® M is a well defined R-module. We now check that
the Lie bracket is well defined on L ® M. Let

(1) Fn = u Lm x Mm, n

m> 1

be the set of generators of (L ® M)n' We have the canonical projection

(2) n : FAG(En x Ek) - (L ® M) n ®R (L ® M)k

with n((x, C), (y, 77)) = (x ®r;) ® (y ® 71). The relations for n are:

A, B E FAG(En), C, D E FAG(Ek)

A - B (A, c) - (B, c) for all c E Ek
(3)

C - D (a, C) - (a, D) for all a E En

((Ax, (y, 71)) - ((x, ), (Ay, 77) for A E R.

We have to prove that the homomorphism
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(4) K : FAG(En x Ek) - (L i M) n+k

defined on generators by

K((x, ), (y, 77)) _ [x
M,

YNJ (YM( # YN?1)
M, N>1

factors over 11. We do this for the relation (A, c) - (B, c) where
A = (x, + (x', ) B = ' (cn(x, x'), YN(() ) and c= (y, c E.
W e have n> 1

(5) K(A, C) = K(((x, (), c) + ((x', c))

([xM, YNJ (YM # [x`M, YNJ (YM # YNn ))
M,N>1

([xM, YNJ + [x'M, YNJ) (YM # YN17)
M, N>1

The last equation follows from (ii) (3. 1) since Yj vanishes on products
YM( #

)N77
for j >_ 2, see (1. 1) (e).

On the other hand we have

(6) K(B, c) = (I I [cn(x, x')m, YNJ) YN?]
n> 1 m, N> 1

We now fix a prime p > 3. Then K(A, c) = K(B, c) follows from the
equation mod p

(7) [xM, yNJ + [X 'M, yNJ ° e[cn(x, x')m, yNJ
M. n=M
m, n>1

where e = (m n)1 /(m!)n(n! ). In (7) only indices M, N, m, n appear
which are powers of the prime p. In this case we know for the universal
enveloping of L that (mod p)

(8)
[xM, yN] = [xOM,

YON seeI§4,

where xOM = x ... x is the M-fold product in UL. Therefore (7)
follows from the equation

(9) x®M + x,E)M =
E e cn(x x,)0m

m n=M

which we already described in I § 4.
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For relations A - B of type (i) or (iii) it is easy to check that

K(A, c) = K(B, c). Similarly we treat the relations C - D in (3). This
proves that the bracket is well defined on L ® M. We still have to check
that it is a Lie-bracket, see V (0. 4). It is enough to consider anti
symmetry and the Jacobi identity on generators: These equations follow
easily from (8) and (V) in (3. 1). //

(3. 3) Proposition. For modules of coefficients M, N in CoefR and
for a Lie algebra L in LieR there is a canonical isomorphism

(L®N)®M- L® (N®M)

in LieR.

Proof. The isomorphism maps a generator (x to the

generator x ® (Z ® ('). For the proof that this map is well defined we
consider the R-module

R=(L®N)
®N

(N ®M)

with

.f'n = FAG( (L ®N) m x (N ®M)m, n)
m>1

The relations are (x, y E L ® N, , 77 E N ®M)

(i) (x, + (x, 77) - (x, ( + 71)

(ii) (x, ) + (Y, 0 - (x + Y, ) + Y (c (x, Y), Y
n-2

(iii) (x ®a, ) - (x, AO() for A c N.

From the retraction
i e

R 4 N R

we obtain well defined maps

i
(L®N)®R (R®M) : £

i'
(L ®R) OR (N ®M) 9

n n
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with ci = 1, c'i' = 1. This proves that i and it are injective. On the
other hand it is easy to see that i and i' are surjective. Therefore
i'-1i is a well defined isomorphism of R-modules. Since by (V) (3. 1)

[x 0 M, y i SIN] = I [xn, ym] i rn (o * rMW .
n>N
m>M

Compare V (2. 3) (i), we find that i'-1i is in fact an isomorphism of Lie
algebras. //

(3. 4) Remark. If the invariants yr for r > 2 are trivial in M the
relations (3. 1) show that we have a canonical isomorphism

LiM=L9M

of R-modules, see V (3. 12). We therefore consider y as the twisting
of LAM.

Clearly we have the canonical isomorphism

(3.5) LiR=L

which we already used in the proof of (3. 3). Similarly as in (2. 6) we now
define with respect to a monoid-structure on coefficients M an operation
of M on a Lie algebra L.

(3. 6) Definition. Let (M, (D) be a monoid in CoefR and let L be a
Lie algebra in LieR. We say M operates on L if we have a morphism

0
LOM L, x0a - xOa

in LieR such that the diagrams

LiM®M

LiM

1®O

0

148



L i R

commute.

Now we have:

VII

(3. 7) Proposition. With the identification in (1. 8) a Lie algebra L
over M in LieM defined in V (2. 12) is exactly given by an operation
O of (M, (D) on L.

Therefore the category LieM with homotopy coefficients (M, (D)

is thus just the category of M-equivariant morphisms in LieR. We con-
sider the forgetful functor

LieM - LieR

which leads to the following definition (dual to (2. 8)):

(3. 8) Definition. Let L be a Lie algebra in LieR. We call a Lie
algebra LM in LieM the M-extension of L if we have a morphism

i : L - LM in LieR

with the universal property: For any Lie algebra K in LieM and any
0 : L -+ K in LieR there exists a unique M-equivariant OM so that

commutes in LieR.

(3. 9) Theorem. For a monoid (M, O) in CoefR and for a Lie
algebra L in LieR there exists the M-extension L - LM.

Proof. We define LM as an object in LieR by
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LM=L®M

Now M operates on L ® M by

O=1L®O:

It is easily checked that

has the universal property in (3. 8). //

(3. 10) Definition. Let X = {X n, n > 0) be a graded set with X0 = 0.
We call i : X - LM(X) the free Lie algebra in LieM generated by X
if i is a function of degree 0 with the property: Any function : X - K
into an object of LieM of degree 0 has a unique extension q :
in LieM with 0 ° i = 0.

Clearly LM(X) is the M-extension of the free object LR(X) in
LieR. Therefore we have

(3. 11) Corollary. There exist free objects in

We know that for the graded set X with
Lie algebra

(3.12) PH,k(E2 - SSRxl, R) = LR(X)
XEX

LieM.

X0 = 0 the homology

is the free Lie algebra in LieR generated by X. In fact

H*(Q - ESRxI, R)
XEX

is the primitively generated tensor algebra generated by X and this
algebra is free as an R-module.

§ 4. The Hilton Milnor theorem and its dual

Let R be a subring of Q with 1/2, 1/3 c R and let M = M*R*
be the module of spherical homotopy coefficients as defined in V § 2. In

chapter V and chapter VI we studied suspensions EX and loop spaces
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S?Y which are decomposable and even splittable, see VI (3. 3).

In the following let X and S2Y be connected and of finite type
over R.

(4. 1) Theorem. If £X is splittable a right inverse R : H*(X, R)-
M*(X, R) of the degree map deg is an M-extension of the algebra
H*(X, R). That is, (Y yields an isomorphism in Div algM

M*(X, R) - M ® H*(X, R)

The dual of this theorem is:

(4.2) Theorem. If S2Y is splittable a right inverse
r : PH*(PY, R) -+ n*(S?Y) 0 R of the Hurewicz map 0 is an M- extension,
that is, , induces an isomorphism in LieM

n*(S2Y) ® R - PH*(S?Y, R) @ M .

Proof. (4. 1) and (4. 2) are in fact special cases of VI (3. 4).

By VI (3. 4) we know (n even)

Mn(X, R) = [FXR, SSR] = expR(H*(X, R), n*,n)

= (M ® H*(X, R))
n

.

The last equation is true by VI (2. 1) since the Lie bracket in n*S2R is

trivial.
Moreover we know from VI (3. 4)

nn(PY) & R = [SSR, YR]

= expR(M*(SR, R), PH*(cY, R))

_ (PH*(l Y, R) i M) n

For the last equation compare the relations in VI (2. 1) and in (3. 1). //

In V (1. 3) we defined the universal objects S2R for the spherical
cohomotopy algebra M*( , R). For these universal objects we have
by (2. 12):
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(4. 3) Corollary. Let X be a graded set with X finite for n > 0
and X0 empty. Then

M*(
X IQ

RxI R) = M &A
R(X)

XEX

is isomorphic in Div algM to the free M-algebra generated by X.

This corollary is dual to the following Hilton-Milnor theorem
[23]. We point out that we need no basic commutators to formulate it.

The spheres FSR are the universal objects for the homotopy Lie
algebras n*(SQ . ) 9) R. We have by (3: 12):

(4. 4) Corollary. Let X be a graded set with X finite for n > 0
and X0 empty. Then

n*(62 v zS1XI) 9) R = -LR(X)
xEX

is isomorphic in LieM to the free Lie algebra over M generated by X.

(4. 3) and (4. 4) are consequences of (4. 1) and (4. 2) and of the
following result:

(4. 5) Theorem. (A) If EX and EY are splittable then so is
F (X X Y).

(B) If f2X and f Y are splittable then so is o (X - Y).

Proof. The proof is purely formal and relies on the existence
of free products

J__L in Div algR and LieR. Let aX and orY be
splittings for FX and EY respectively. Then

H*(X X Y, R) = H*(X) ll H*(Y)

1aX11 aY
M*(X, R) ll M*(Y, R)

aXxY

1 (P1 P2)

M*(X X Y, R)

is a splitting for E(X x Y), p2 and p2 are the projections of X x Y
onto X and Y respectively.
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Similarly we obtain the result for S2(X - Y). Let TX and TY

be splittings for S2X and 62Y respectively. Then

PH*(S2(X - Y)) = PH*(PX) L PH*(cY)

ITX LTY

TX\Y \ 7r*(cXR) 1l n*(PYR)

(iI
*'

12*)

'T*(Q'(XR - YR))

is a splitting for 62(X - Y). i1 and i2 are the inclusions of X and Y
into X - Y respectively. //

As a special case of VI (3. 4) we now have as a consequence of
(4. 1) and (4. 2):

(4. 6) Corollary. Let X and S2Y be connected and of finite type over
R. If £X and PY are splittable the group [EX, Y'R depends only on
the cohomology algebra H*(X, R) and the homology Lie algebra
PH*(c Y, R). In fact we have the isomorphism of R-local groups

[LX, Y'R - expM.M ib H*(X, R), PH*(52Y, R) 0 M)

where M is the module of spherical homotopy coefficients.

In particular for graded sets X, Y with X. n, Yn finite and
X0 = Yo = 0 we have the isomorphism of R-local groups

[F x P,
RX, ASR ' ] - expM(M 9) AR(X), LR(Y) 9 M)

XEX yEY

A further application is the algebraic characterization of the most simple
homotopy categories:

(4. 7) Definition. We call X a S;1-space and Y an c21-space if X
and Y are homotopy equivalent to

. ESR I and x nja
aEA aEA
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respectively, where A is a graded set with A. finite and A0 empty.
Let Top ri respectively Top 01 be the homotopy categories of E
and ct1-spaces.

(4. 8) Theorem. We have equivalences of categories

1T,k(SZ.) OR : TopE1-0-F LieM

M*(. , R) : Top 5Z1 - F Div algM

where F denotes the sub-category of free objects of finite type over R.

This result allows us to say that the structure of spherical homo-
topy coefficients M as a monoid in CoefR is the primary structure of
homotopy groups of spheres. This primary structure determines the
homotopy categories Top E1 and Top $Z1.

In fact let CoefR be the category of monoids in CoefR. Then
each object M in CoefR determines the categories

EM = F LieM

QM = F Div algM

in such a way that for the spherical homotopy coefficients M we have
equivalences of categories

EM - Top E1

nM-Topa1.

This leads to the following type of problems:

(4. 9) Definition. A E2-space is the mapping cone of a map in Top E1
and a a2-space is the fibre of a map in Top 01. Let Top E2, respec-
tively Top a2, be the homotopy category of these spaces.

(4. 10) Problem. Introduce secondary structure on an object in CoefR
such that the spherical homotopy coefficients have this structure. Let

CoefR be the category of objects in CoefR with this additional structure.
Introduce the structure in such a way that each object 1VI in
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in CoefR determines purely algebraically categories EM and QM so that
for the spherical M there are equivalences of categories

EM- Top Z2, S2M-TopS2z.
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